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Estimation of Slowness Vectors and Their Uncertainties Using 

Multi-Wavelet Seismic Array Processing 

by Lone K. Bear and Gary L. Pavlis 

Abstract We have developed a new seismic array data processing method to 
produce slowness vector estimates and an objective measure of their uncertainties in 
the form of statistical confidence intervals. The slowness vector, which is typically 
transformed into bearing and velocity, is a key parameter used for identifying seismic 
phases and for event source location. Our method, multi-wavelet beamforming, is 
closely related to both time-domain and frequency-domain beamforming. The major 
advantage of multi-wavelet beamforming is that it produces multiple estimates of 
the slowness vector that are approximately statistically independent. First, a set of 
wavelet transforms is applied to the data in a manner analogous to the use of the 
windowed Fourier transform. Next, for each wavelet transform, we calculate sem- 
blance, a measure of signal coherence, for a range of possible slowness vectors. Then, 
the slowness vector estimate associated with that transform is the vector that produces 
the largest semblance value. The multiple slowness vector estimates can be treated 
as samples from a probability distribution, whose "center" we estimate using the 
mean, the median, and an M-estimator. Uncertainty intervals are calculated for these 
estimators by applying the jackknife statistical method. The intervals for the mean 
estimator appear to be true statistical confidence intervals, but the estimates can be 
biased by a directional noise field in low signal-to-noise circumstances. The median 
estimates are less biased by a directional noise field but sometimes underestimate the 
uncertainty. The M-estimator produces less-biased estimates while appearing to es- 
timate correctly their uncertainty. 

Introduction 

After the Geneva "Conference of Experts" of 1958, seis- 
mic arrays quickly gained importance as a fundamental tool 
for detection and location of small seismic events (see Huse- 
bye and Ruud, 1989). A variety of methods have been de- 
veloped to determine the direction of approach and phase 
velocity of a seismic waveform as it crosses an array. This 
indispensable information is generally determined in the 
form of a slowness vector (slowness = 1/velocity) consist- 
ing of east-west and north-south components. Until now, 
an objective measure of the estimate's uncertainty, which is 
fundamental to determining whether it has the necessary pre- 
cision for a given application, has been lacking. Existing 
methods determine a single estimate for the slowness vector 
and do little to address the question of how good that esti- 
mate is. To our knowledge, the only previous attempt to 
quantify uncertainties in array slowness vector measure- 
ments is a somewhat ad hoc method devised by Bratt and 
Bache (1988) that uses arbitrary measures of the quality of 
the signal to determine solution uncertainties. Our seismic 

array processing method, which we call multi-wavelet beam- 
forming, is important because it provides an objective 
method for quantifying errors in the slowness vector esti- 
mates. Because our method works directly with the observed 
data and uses no arbitrary free parameters, it is objective and 
holds great promise for automated calculation and appraisal 
of array solutions. 

The primary difference between multi-wavelet beam- 
forming and other array processing methods is that the new 
method produces multiple slowness component estimates 
that are approximately statistically independent. These esti- 
mates can be treated as samples from a probability distri- 
bution and used to calculate confidence intervals using stan- 
dard statistical methods. This new array processing method 
combines aspects of both time-domain and frequency-do- 
main beamforming and incorporates concepts drawn from 
such diverse topics as wavelet transforms (Daubechies, 
1992), multiple spectral estimation (Thomson, 1982; Lilly 
and Park, 1995), and statistics (Miller, R., 1974). 

755 
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Integral Transforms 

The characteristics of a seismic signal can be described ^ _ 
fundamentally by time location and frequency content. 
These two properties can be studied simultaneously by using 
a moving-window Fourier transform. The windowed Fourier 
transform of signal s(t) for frequency / and time t can be 
written as where 

(fc+fw) Uc-fw) 

J    \w(f)\2df-    J     \w(fWdf 
(fc+fw) -Uc-fw) 

1/2A( 

[    \W(f)\2df 
- 1/2A( 

TM(/,0 =    J   s(Og(i ~ t) cos [2nM ~ OK 
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where g(0 is a chosen taper of length T (Kumar and Fou- 
foula-Georgiou, 1994). The integration kernel for this trans- 
form is then gf(t) = g(t) cos (2nfl) + ig(t) sin (2nfi). 

Within the last 10 years, there has been widespread in- 
terest in developing a special class of kernel functions called 
wavelets. Wavelets have been independently introduced in 
various fields of study since the 1960s (Daubechies, 1992). 
They were first used in geophysics by Morlet et al. (1982). 
Wavelets are functions developed to have time-frequency 
localization. That is, the time lengths of the functions match 
the scale of the frequencies to be studied (Kumar and Fou- 
foula-Georgiou, 1994). When used as the integration kernels 
for a transform, they provide an automatic scaling of the time 
window to be studied. In a real sense, they provide a natural 
bridge between the time and frequency domains. 

It is well known that a finite time function cannot also 
be finite in frequency due to the uncertainty principle (Sle- 
pian, 1983). We can at best hope to concentrate its energy 
into a frequency band of interest. The work of Slepian (1983) 
and Thomson (1982) introduced a novel approach to finding 
finite time functions with their energy concentrated in a fre- 
quency band of the form - W < f < W. These functions 
have been applied in a range of techniques commonly re- 
ferred to as multi-taper or multi-window methods (e.g., Park 
et al, 1987). A generalization of this approach was recently 
developed by Lilly and Park (1995). The Lilly and Park 
wavelets are real, discrete time series (wm) with M samples 
and sampling rate Ar. They are designed to concentrate en- 
ergy within a frequency range defined by a center frequency 
fc and a bandwidth 2fw (where f„ S/c). 

Because the wavelets are real time series, energy in the 
frequency domain must appear in both the positive and neg- 
ative frequencies. Thus, any frequency band of interest is 
defined by 1/ ± /cl S fw. The fraction of the total energy 
contained in this frequency band is 

W(f) = At     2      wme' 
m =-P+\ 

jlnfmAt (2) 

and where P is the closest integer §M/2 and R is the closest 
integer SiM/2. 

Lilly and Park (1995) calculate a set of wavelets by 
rewriting equation (2) as an eigenvalue equation of the form 
Aw = lw, where 

A     = 
sin [2n(fc + fw)At(m - »)] 

n{m — n) 

_ sin [2n(fc - fw)At(m - «)] 
n(m — ri) 

(3) 

and solving for w. This equation has M orthogonal solutions 
of eigenvectors w1*' and associated eigenvalues lk that we 
order so that ^ > A2 > ^3 > • • • > -V The wavelets ww 

are normalized such that 2  wm]     = 1 • We only use the 
m=l\ / 

wavelets w(i) that have Xk close to 1, since these functions 
have almost all their spectral energy within the frequency 
band of interest. The number of such wavelets is dependent 
on the width of the frequency band and the time length of 
the wavelets (Lilly and Park, 1995). This is a direct conse- 
quence of the uncertainty principle. 

The wavelets occur as even and odd pairs where the 
pairs emphasize different portions of the frequency band 
(Fig. 1). Since the pairs of wavelets are functions that are 
90° out of phase, they can be combined into complex func- 
tions of the form w}j) = {w$ + iw$], where/is the center 
frequency, w*f} is the ;"th even wavelet, and wj£ is the y'th 
odd wavelet. 

The multi-wavelet transform with kernel wj7' and time 
length T = MAt is 

(+772 

TV{j][sl(f,t) =    J   s(&w$ {£, - ifö 
(-7/2 

(+7/2 

+ i   j   s(Ow$ (£ - ifö.    (4) 
(-7/2 

Note that equations (1) and (4) have the same form. To un- 
derstand the nature of the wavelet transform, we compare 
the real parts of the windowed Fourier and multi-wavelet 
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(a) (b) Time Power Spectra 

MX 

HA Art 

ft 

Time Frequency 

Figure 1. Ten real Lilly and Park wavelets as cal- 
culated from equation (2): (a) in the time domain and 
(b) their frequency power spectra. Wavelets from top 
to bottom go from higher- to lower-energy fraction 
(k) values. 

integration kernels shown in Figure 2. The taper used for 
both Fourier kernels is a 2-sec-long, zeroth-order An prolate 
taper (Park et ah, 1987). The wavelets in Figures 2c and 2d 
are scaled such that/c,(c) = l/kfcXd) andfwM = \lkfwld), 
where k = 4. A fundamental difference between wavelets 
and more conventional Fourier methods is that wavelets vary 
the time and frequency scales in a manner that matches the 
time length of a wavelet to the frequencies it contains. This 
is important for optimal resolution of broadband signals that 
are characteristic of modern seismological data. It is shown 
in Appendix A that if the number of samples stays the same 
and A/(() = kAtid), then the wavelets in Figures 2c and 2d 
are exact scaled versions of one another. Thus, we can si- 
multaneously scale the time length and the frequency band- 
width by simply changing the sampling rate instead of hav- 
ing to recalculate the wavelets each time. 

It is obvious that signal analysis using either type of 
transform can only resolve features in the time domain that 
are on the order of length T. For the windowed Fourier trans- 
form, it is critical to note that the taper length Th an arbitrary 
free parameter. The choice of the taper also directly affects 
the resolution limit in the frequency domain since the fre- 
quency spectra of gf is the frequency spectra of the taper 

(a) 

Frequency (Hz.) 

(b) 

(c) 

(d) 

Frequency (Hz.) 

Figure 2. Four integration kernels for moving- 
window time-frequency analysis: (a) a windowed 
Fourier kernel with / = 2 Hz and T = 2 sec, (b) a 
windowed Fourier kernel with / = 8 Hz and T = 2 
sec, (c) a Lilly and Park wavelet with/ = 2 Hz and 
T = 2 sec, and (d) a Lilly and Park wavelet with/ = 
8 Hz and T = 0.5 sec. For (a) and (b), we used a 2- 
sec long, zeroth-order 4n prolate taper (Park et al, 
1987). Note that (a) and (c) are nearly identical, while 
(b) and (d) differ drastically. In (d), frequency reso- 
lution has been sacrificed for improved time resolu- 
tion. 

shifted to be centered about/. Once the taper is chosen, the 
frequency resolution is fixed regardless of which frequencies 
are being studied (Kumar and Foufoula-Georgiou, 1994). 

In contrast, the time length T of the wavelet integration 
kernel is automatically scaled to be compatible with the scale 
of the center frequency in the time domain. This scaling, 
however, comes with a price. If the resolution in the time 
domain is increased by shortening the time interval T, then 
the resolution in the frequency domain must decrease. We 
would argue that for seismological applications the increased 
resolution in the time domain is a major advantage in the 
study of impulsive arrivals and more than offsets any infor- 
mation loss due to the lower-frequency resolution. 

Beamforming 

Classical beamforming (e.g., Kvaerna and Doornbos, 
1986) uses windowed Fourier transforms to slant-stack array 
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data in the frequency domain. For a given slowness vector 
u = (uew, uns) and array station n, there is a plane-wave time 
delay T(U, n) = -u-x„, where x„ is the vector position of 
the station with respect to a local Cartesian system. For N 
stations, thcN X Nspectracovariance matrix C(/, t, u) has 
components 

Cnm(f,t,u) = <T[sn][f,t + T(u,n)] 

■T[sJ*U,t + T(u,m)],    (5) 

where T [s„] is the windowed Fourier transform for station 
n and the asterisk denotes the complex conjugate transpose. 
The average station signal power can be written as 

0.5 - 3.5 Hz. 2.0 -14.0 Hz. 

Pmg(f,t,u) = \d\2-tr[C(f,t,u)], (6) 

where tr is the trace of the matrix and d is an A^ X 1 vector 
N 

of station weights such that 2 d„ = 1. We will be using 

uniform weighting such that d„ = \IN. The power of the 
beam is defined to be 

Pbeam (/, t, u) = ATC(J, t, u)d, (7) 

where the superscript T denotes transpose. 
A common measure of the overall coherence between 

the station signals is semblance (Husebye and Ruud, 1989): 

S(f, t, u) = 
Pbeam (f, U u) 

Pavg {f, t, U) ' 
(8) 

Semblance values can range between zero and one. If the 
signals stack exactly, then the semblance is one. For white 
noise, S is approximately \/N. The semblance values are 
calculated for a range of slowness vectors and contoured in 
what we call the slowness grid. 

The slowness grid pattern for a given array geometry, 
frequency band, and any coherent plane-wave signal is com- 
pletely predictable. A standard display for this "beam pat- 
tern" is the slowness grid for an impulse signal with zero 
slowness. Beam patterns for two frequency bands are shown 
in Figure 3. In all cases, the highest semblance value appears 
at the center of the beam pattern. This is what we expect 
since the station signals should be most coherent when 
stacked with zero time lags. 

The slowness grid for a plane-wave signal with slow- 
ness vector u0 would have the same pattern translated to be 
centered on u0. Consequently, the standard method to esti- 
mate u for an event of unknown origin is to search for the 
point in the slowness grid with the largest semblance value. 
A problem with this approach is that the resolution is limited 
by the grid spacing AM. Thus we follow a methodology used 
by Harvey (1994) where each slowness component is deter- 
mined by a center of mass calculation. That is, for the east- 
west slowness estimate, we calculate 

(b) 

Mm 

(d) 

(f) 

0.0 0.2 
I 

0.6 0.4 

Semblance 
0.8   0.9   1.0 

Figure 3. Beam patterns for the Geyokcha array in 
two different frequency bands. The beam patterns are 
oriented so that north is up and east is to the right and 
the slowness values range from - 0.3 to 0.3 sec/km 
in both the north-south and east-west directions, (a) 
through (d) were calculated using the corresponding 
kernel functions of Figure 2; (e) and (f) were calcu- 
lated by averaging the beam patterns from the five 
complex wavelets for each frequency band. The beam 
patterns for the 2- to 14-Hz frequency band exclude 
the data from stations SEH, SWH, and NH. 

Wpw 

2      ukm{uk, Uj) 

X      m(uk, Uj) 
(uk, Uj) &4 

(9) 

where 

m(uk, Uj) 
0 S(f, t, uk, M,.) < 0.9Speak (/, t)f 

S(f, t, uh uj)   S(f, t, uk, Uj) > 0.95peak (/, ?)' 
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A is the set of all slowness vectors in the slowness grid, and 
Speak *s tne largest semblance value calculated using the 
slowness vectors in A. The equation for the north-south 
slowness estimate is similar. 

What we call multi-wavelet beamforming can be 
couched in the same mathematical constructs as classical 
beamforming by substituting 

C<i!(/Uu) = W{J][s„][f,t+x(n,n)] 

■W{J)[sJ*\f,t + T(u,m)]    (10) 

for the spectra covariance matrix. In practice, though, the 
formation of the covariance matrix is inefficient when taking 
time delays into account. 

It is straightforward to incorporate the time delays when 
forming the slowness grids in the time domain. In standard 
time-domain beamforming (Pavlis and Mahdi, 1996), fre- 
quency-domain localization is normally accomplished by 
applying a bandpass filter, with center frequency /, to the 
data. If <j>f(t) is the time-reversed filter of length T, then the 
filtered signal can be written 

r+772 

c[s](f,t)=   $ s(04>f(t;- t)dl        (11) 

The power at each station is summed over some arbitrary 
time L such that 

1 + U2 

P„(f, t,u)=    I   \C[s„M t + T(U, n)f dt    (12) 

and the average summed station power is 

1   N 

P«t (/. t, u) = - 2 Pn (/, t, u). (13) 

The beam for the array is defined as 

1   N 

Kf, t, u) = - 2 C[s„M t + T(U, «)],       (14) 
™ n= 1 

so the beam power summed over time length L is 

( + 1/2 

^beam (/, /, «0   =      J     \b(f, £ u)|2 <%. (15) 

The semblance is then defined as in equation (8). 
The summing over time L is done to smooth the power 

estimates as the signal cycles back and forth from local max- 
ima to local minima. This averaging is necessary to produce 
a stable solution but introduces an arbitrary free parameter 

in the form of the length L. We originally used this same 
approach in multi-wavelet beamforming, setting L equal to 
the length of the wavelet. We found, however, that the sta- 
tistical independence of the multi-wavelet slowness com- 
ponent estimates is seriously violated by this averaging. As 
a result, we use a different approach that exploits the slow 
variability of the envelope of a function (Kanasewich, 1981). 
The station power used in multi-wavelet beamforming is cal- 
culated as 

PW (/, t, U)  =   IW<» [Sn][f, t +  T(U, ri)}\\        (16) 

Since the wavelets are even and odd functions, the wavelet 
transform can be considered a convolution, or filtering, 
operation where wfe and w/o are two filters with 90° phase 
differences. This implies that the real and imaginary parts of 
the wavelet transform also have a 90° phase difference. The 
envelope of any function g can be calculated as 

E(t) = \g(t) + igH (t)\2, (17) 

where gH is the Hilbert transform ofg. The Hubert transform 
introduces a 90° phase shift to g, just as the imaginary part 
of the wavelet transform introduces a 90° phase shift to the 
real part of the wavelet transform. Thus, the wavelet power 
estimate behaves like an envelope function and varies rela- 
tively slowly. This implies that the power estimate will be 
relatively stable. 

Analogous to the time-domain method, then, we cal- 
culate 

P{A (f, U u) = -J- 2 PP if, t, u), (18) 

and the beam power is defined as 

PHL (/, *, u) = l*<» (/, t, u)l2 

1 
JwW[Sj[f,/+  T(U,7I)] 
t*  n= 1 

The semblance is then defined as 

p\!L (/. t, u) 

(19) 

SlJi (/, t, u) = 
Pl& (/, t, u)' 

(20) 

Jackknife Method 

The primary advantage of multi-wavelet beamforming 
over other methods is that it enables us to produce multiple 
slowness component estimates using equation (9)—one es- 
timate for each complex wavelet. These estimates can be 
thought of as samples drawn from some unknown distribu- 
tion. We are particularly interested in estimating a parameter 
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0 that defines a "center" of the distribution and the variance 
in that estimate. 

For an estimator 6, the jackknife statistical method pro- 
vides a computationally simple way to determine its variance 
with no a priori information about the distribution. If we 
have J independent samples Xx, X2,..; , Xj from the distri- 
bution, then the delete-one estimate, 0(_,;, is a function of 
J — 1 samples such that 

0(_o = 0(X„ ..., X,_!, Xl+l,..., Xj).        (21) 

These delete-one estimates can be used to calculate the var- 
iance of 0all = 0(Xi,..., Xj) by using the formula 

J-—2 (0<-o - ^c))2 

J   ~ 

where 

1   J   - 
0(.) = - Zi 0(-o (22) 

(see Thomson and Chave, 1991). This estimate is known to 
be conservative. Even if the data are not identically distrib- 
uted, it has been shown that the expected value of s2 is al- 
ways larger than the true variance (Efron and Stein, 1981). 

We use the jackknife variance to create confidence in- 
tervals for our estimates of the slowness components. If ö-m 
has minimal bias, then it has been shown that (6M - 6)ls is 
asymptotically standard normally distributed (Chave and 
Thomson, 1989). Work by Hinkley (1977) has suggested 
that if the distribution of the data is close to normal, then the 
usual method of producing a 95% confidence interval can 
be used: 

e = eM ± s-t. 0.975' (23) 

where f0.975 is the 0.975 quantile of the Student t distribution 
with / - 1 degrees of freedom. 

In any real application, there is some limit on how well 
the slowness vector can be estimated. Possible limiting fac- 
tors include the data sampling rate as compared to the ap- 
erture of the array and the slowness grid cell size. Such fac- 
tors as these combine to place a floor on the width of the 
confidence interval. How this floor should be determined is 
probably dependent on details of a given array and should 
be considered on a case-by-case basis. 

Statistical Considerations 

It is important to determine whether the slowness esti- 
mates calculated from multi-wavelet beamforming can be 
considered statistically independent samples from a distri- 
bution, as required by the jackknife method. The true slow- 
ness component K^ for a pure plane-wave arrival is a con- 

stant, so there must be some "noise" component in the 
recorded signal that provides the variability in the slowness 
estimates such that 

(24) 

If the expected value for wnoise is zero (i.e., the noise is non- 
directional), then the true slowness «true can be considered 
the "center" for the distribution of Mestimate. If the noise field 
is directional, the "center" of the distribution will be biased 
toward that direction to some extent. 

Since iv,«, does not affect the variability in the estimate, 
we will now only consider the noise field. Seismic "noise" 
generally falls into two categories: ambient noise (including 
both natural and cultural sources) and event-generated noise 
(or coda). Both types can be highly colored in frequency 
content and directional, but we will make the standard as- 
sumption that the noise is Gaussian with mean zero and var- 
iance one and that the noise samples are all mutually inde- 
pendent. With this assumption, it is shown in Appendix B 
that the slowness component estimates are approximately 
independent. We note that it is the necessity of satisfying 
the independence assumption that leads to the sample-by- 
sample power estimates given by equation (16). Time av- 
eraging (as in equation 12), which is standard practice in 
time-domain beamforming, would completely invalidate the 
independence assumption and thus invalidate the jackknife 
confidence intervals. 

Application 

To demonstrate our approach, we analyze data recorded 
at the Geyokcha seismic array (Al-Shukri et al., 1995). This 
array operated in Turkmenistan on the northern border of 
Iran from August 1993 to November 1994. We used a subset 
of the array that consists of 12 stations with three-component 
Streckeisen STS-2 sensors arranged as shown in Figure 4. 
All the data used here come from the triggered data stream 
that was recorded at 250 samples/sec. We used only the ver- 
tical components and removed the DC bias from each trace. 

Three different frequency bands were used to study 
these data: 0.5 to 3.5, 1 to 7, and 2 to 14 Hz. A set of Lilly 
and Park wavelets was calculated using equation (2) for the 
band of 2 to 14 Hz (/c = 8Hz,/„ = 6 Hz) and a sampling 
rate of 250 samples/sec. If each wavelet is 125 samples long, 
then there are 10 real wavelets (shown in Fig. 1) with energy 
fraction greater than 0.9. These wavelets are combined into 
complex wavelets and used to produce five estimates for the 
slowness vector. These five estimates take advantage of the 
fact that the quantile values of the Student t distribution 
change relatively slowly for 4 or more degrees of freedom. 
These same wavelets, with sampling rates of 125 samples/ 
sec (/c = 4 Hz,/W = 3 Hz) and 62.5 samples/sec (fc = 2 
Hz,fw = 1.5 Hz), can also be used for the other two fre- 
quency bands (Appendix A). 



Estimation of Slowness Vectors and Their Uncertainties Using Multi-Wavelet Seismic Array Processing 761 

CIS 

JJeyokcha Array^ 

Iran 

ANH 

kSWH A»31 

^E22 

I J. • 
250MEimS 

ASEH 

Figure 4. The broadband stations of the Geyokcha 
array. The star on the map shows the location of the 
array in central Asia. The inset map shows the array 
geometry. 

A Simulation 

We first apply our processing method to a controlled 
simulation with 100 similar synthetic events. We started by 
using a trace with a very high signal-to-noise ratio recorded 
at station ORGH of the array. This trace had a maximum 
first-arrival amplitude of a = 1820 nm/sec. We then pro- 
duced a simulated plane-wave signal as if this waveform 
traveled across the array with a given azimuth of 166° and 
slowness of 0.158 sec/km (Fig. 5a). [These were the values 
obtained for the true event by the time-domain method as 
implemented by Harvey (1994)]. 

We separated a long segment of noise recorded at the 
array into 100 data sets such that each trace had the same 
number of samples as the plane-wave traces. The synthetic 
traces for each station n were then defined as 

3(7 
-Pn.t  +  fln.n (25) 

where pnt was the plane-wave trace for station n, r]n, was a 
noise trace recorded at station n, and rj is a measure of the 
noise amplitude defined as 

2   (tin,,   ~   tf„f 
(26) 

(a) 

(b) 

(c) 

Figure 5. Vertical records from two stations for 
one of the synthetic events. Shown here are (a) the 
plane-wave traces, (b) the plane-wave traces with 
noise added (the synthetic traces), and (c) the syn- 
thetic traces filtered to the frequency band 0.5 to 3.5 
Hz. The light dotted lines denote time in seconds. 

where T is the number of samples. This is, on average, com- 
parable to a 3-to-l signal-to-noise ratio for the broadband 
signal (Fig. 5b). 

There is a question as to which time window to use 
when calculating the slowness grids. The way in which the 
wavelets interact with a particular phase and the underlying 
noise field is unpredictable. It is not optimal to always place 
the time window about a phase in the same position relative 
to a time pick. A coherence maximization scheme appears 
to hold the most promise. The method we use in this article 
(which is by no means the only possibility) is as follows. 
First, we produce slowness grids over a suite of times about 
the phase of interest. Next, we pick the peak semblance val- 
ues Sjjjak (/> 0 f°r eacn time. Then, we average the values 
for the J wavelets, 

s.v. (/, t) = - 2 s&L (f,ty 
j 

(27) 

, where 5avg attains its max- and determine the time point, tn 

imum. Since semblance is a measure of coherence, it is in- 
tuitively appealing to assume that the maximum semblance 
occurs where there is the strongest signal coherence. Thus, 
we use the slowness grids calculated at tmaK. We performed 
our signal analysis in the frequency band 0.5 to 3.5 Hz. (Fig. 
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5c). Note that the signal-to-noise ratio is lower in this fre- 
quency band. We calculated semblance values over a 50-by- 
50 slowness grid with values between -0.3 and 0.3 sec/km. 

Our goal in creating 100 samples of the "same" event 
was to test whether jackknife intervals calculated for the 
slowness component estimates would approximate 95% con- 
fidence intervals. For each of the 100 sets of estimates, we 
produced jackknife confidence intervals for the mean and 
the median. For the east-west slowness component, 96 of 
the 100 jackknife intervals for the mean contained the known 
value (Fig. 6a), while 90 of the 100 intervals for the median 
contained the known value (Fig. 6b). For the north-south 
slowness component, 98 of the 100 intervals for the mean 
contained the known value (Fig. 6c), while 87 of the 100 
intervals for the median did (Fig. 6d). 

There is a noticeable bias in the mean estimates, par- 
ticularly for the north-south slowness component. Vernon 
et al. (1994) observed that the noise field at Geyokcha has 
a high-velocity, directional component with a northeastern 
bearing. Thus, it is not surprising that at these low signal- 
to-noise ratios the noise field would bias the slowness esti- 
mates. Perhaps a more interesting observation is that the bias 
is hardly detectable in the median estimates. We feel that 
these observations illustrate how the complex wavelets each 

interact with the data differently. Some of the wavelets in- 
terfere constructively with the noise field, while others in- 
terfere destructively. The median, unlike the mean, naturally 
minimizes the effects of the outlying biased estimates by 
only using the inner samples of the sorted data. However, 
the median is inefficient in its use of data, which probably 
explains the poorer performance of the median jackknife in- 
tervals. 

Hinkley (1977) suggested that for small data sets from 
significantly non-normal distributions, the validity of the 
Student t jackknife intervals as confidence intervals was 
compromised. We used a quantile-quantile plot to compare 
our set of slowness estimates to the normal distribution. If y 
is the quantile of order p, it is defined as P[X gy] = p. For 
a discrete ordered sample set Xx g X2 ... ^ Xn, the sample 
quantile of order p is defined as y = X[np] + l, where [np] 
denotes the largest integer <np (Dudewicz, 1976). The sam- 
ple quantiles for the slowness component estimates are plot- 
ted against the quantiles from a standard normal distribution 
in Figure 7. Where the plot is linear, the standardized dis- 
tributions are the same (Kleiner and Graedel, 1980). 

It is interesting to compare the normal portion of the 
slowness values with the multi-wavelet average beam pat- 
tern (Fig. 3e) centered on the known slowness vector (0.0382 
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Figure 6. Plots of estimates (minus the known values) from estimator 0 versus the 
confidence interval width for (a) east-west slowness, 0 = mean, (b) east-west slow- 
ness, 0 = median, (c) north-south slowness, 0 = mean, and (d) north-south slowness, 
0 = median. The shaded area signifies where the jackknife intervals contain the known 
value (plotted as a dashed line). 
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sec/km, —0.1533 sec/km). The beam pattern components 
are plotted for Figure 7a as 5(/, t, uew, -0.1533) versus uew 

and for Figure 7b as S(f, t, 0.0382, uns) versus um. Note how 
the portion of the distribution of slowness values that 
matches the normal model corresponds to the peak of the 
beam pattern in a systematic way. We suspect that this re- 
sults from interference effects at these low signal-to-noise 
ratios. The filtering effect of the wavelets can either enhance 
the noise by filtering out signal or enhance the signal by 
filtering out noise. Thus the filtering process can effectively 
change the signal-to-noise ratio. When the wavelet interac- 
tion with the data diminishes the effects of the noise field, 
the slowness estimates are normally distributed about the 
true value. However, when the wavelet interaction with the 
noise field leads to an effective signal-to-noise ratio much 
less than unity, the estimated slowness values can fall any- 
where on the slowness grid. A class of robust methods called 
M-estimators was developed specifically to deal with statis- 
tical distributions like those for the slowness values shown 
in Figure 7 [compare, for example, with the quantile-quan- 
tile plots of Fig. 6 in Chave and Thomson (1989)]. In the 
presence of this type of data outliers, M-estimators are 
known to be useful in simultaneously reducing the bias and 
decreasing the uncertainty estimates derived from such data. 

M-Estimators 

M-Estimators are the generalization of what seismolo- 
gists commonly call residual weights (Anderson, 1982). De- 
tails of the mathematical background for M-estimators can 
be found in Chave et al. (1987) and Press et al. (1992). In 
our case, this involves a weighted mean calculation in which 
the weights are adjusted repeatedly in an iterative procedure. 
In practice, application of an M-estimator always involves 
three choices: (1) a robust method for estimating the scale 
of the spread of the data, (2) an assumption about the un- 
derlying statistical distribution of the data, and (3) a choice 
for the weighting function. 

In our case, we chose to use a form of the median ab- 
solute difference (MAD) as a robust estimate of scale for the 
spread of the data. That is, we calculate 

i = median (||d,- - 0||}, (28) 

where the d, are the measured slowness vectors from each 
of the multi-wavelets and 0 is the current estimate of the 
center of the underlying distribution. This measure of scale 
is appropriate as long as the expected value of s approxi- 
mately satisfies for any z 

P[||H - z|| g E [s]] (29) 

where \i is the true center of the distribution. 
From Figure 7, we assume that the underlying data dis- 

tribution is approximately Gaussian but with heavier tails. 
For this assumption, equation (29) holds. 

(a) 
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(b)     |  0 
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■:f^~ ;   P 
Normal Quantiles Semblance 

Figure 7. Quantile-quantile plots compared to 
one-component beam patterns for the (a) east-west 
and (b) north-south slowness components. The 
dashed lines denote where the semblance value is 0.9. 

Finally, we chose to use Thomson's (1977) redescend- 
ing formula for calculating the weights: 

w(x) = exp{-e^ - ß)], (30) 

where x = |jd - Q\\/s and ß is a parameter that determines 
how far the data must be from 0 before it is downweighted. 
We chose to use ß = 3, which roughly corresponds to 
the downweighting of data more than 2 standard deviations 
from 0. 

The downweighting of outlying data can be expected to 
change the effective degrees of freedom of the data. A sim- 
ple way to see this is if one of n data points were assigned 
a weight of zero, then the estimate would effectively be de- 
termined from n — 1 data samples. An accepted definition 
of the effective degrees of freedom for the M-estimator is 
the sum of the data weights (Anderson, 1982). We will use 
the closest integer less than the sum of the data weights 
minus one for the effective degrees of freedom. 

Confidence Ellipses 

Our arbitrary decomposition of the slowness vector data 
into north-south and east-west components for the calcu- 
lation of confidence intervals could give a misleading picture 
of the actual estimate uncertainty since the direction of max- 
imum error is most likely not in one of these cardinal direc- 
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tions. A standard presentation of error for two-dimensional 
data is to calculate confidence ellipses (Press et al, 1992). 
The ellipse provides a way to define a direction of maximum 
uncertainty (the major axis) while delineating a compact re- 
gion of uncertainty in two-dimensional space. We deter- 
mined the major axis by performing a linear regression on 
the weighted data translated so that the origin is at the esti- 
mated center 0. The linear regression line points in the di- 
rection of greatest spread in the data. We then calculated 
jackknife confidence intervals along the major and minor 
axes by using the weighted average (with the M-estimator 
weights) as the estimator 0. 

The M-estimator results for the 100 synthetic events are 
shown in Figure 8. To create a display similar to that of 
Figure 6, we have plotted the confidence intervals and esti- 
mates for the major and minor axes of the confidence ellip- 
ses. For the major axis, 96 of the 100 jackknife intervals 
contained the known value, while 94 of the 100 intervals for 
the minor axis contained the known value. We can see that 
the estimates are not severely biased like those of the mean, 
while the jackknife intervals still behave as 95% confidence 
intervals. Thus, the M-estimator does a better job than either 
the mean or the median. All further results presented were 
determined using this M-estimator. 

Examples with Real Data 

An Event Swarm 

We have gained some insights into how multi-wavelet 
beamforming behaves with a controlled simulation. We now 
investigate how it behaves with a set of similar seismic 
events with varying signal-to-noise conditions. The record- 
ings of four events at station ORGH are shown in Figure 9. 
These events took place over a 20-min period on 26 October 
1993 and have similar waveforms. We analyzed the first 
arrivals of these events in the frequency range of 2 to 14 Hz. 
The performance of the Geyokcha array at these frequencies 
improves when the outlying stations of SEH, SWH, and NH 
are removed, so we conducted our analysis with the nine 
inner stations. 

The slowness estimates and their confidence ellipses are 
plotted in Figure 10. Based on the area of the confidence 
ellipses, we rank the estimates from best to worst: event 2, 
event 1, event 3, and event 4. This ordering is consistent 
with ordering by signal-to-noise ratios as seen in the seis- 
mograms and the average semblance plots of Figure 9. We 
note that the slowness vector for event 2 is statistically dis- 
tinct from those of events 1 and 3. On further inspection of 
the signals in Figure 9, we can see that for events 1,3, and 
4 there is a second upward impulse closely following the 
initial upward impulse that does not appear to be present on 
event 2. This is possibly due to a difference in the sources 
for event 2 and the other three events, but it would most 
likely have been dismissed as due to the noise field without 
the statistical evidence for distinct slowness vectors. 
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Figure 8. Plots of estimates (minus the known 
value) from estimator 9 = M-estimator versus the 
confidence interval width for the (a) major and (b) 
minor axes of the confidence ellipse. The shaded area 
signifies where the jackknife intervals contain the 
known value (plotted as a dashed line). 

Impulsive versus Emergent Signals 

Both the simulated plane-wave and the swarm events 
have impulsive first-arrival phases. Many regional phases, 
however, are highly emergent, and it is important to see how 
this method responds to such phases. We compare average 
semblance plots for an emergent and an impulsive event in 
the frequency band 1 to 7 Hz in Figure 11. The character of 
these two types of events is preserved in the average sem- 
blance plot. Choosing the time window for estimating the 
slowness components of the emergent signal's first arrival(s) 
is not as straightforward as with the impulsive signals. Since 
the wavelets are each 1-sec long, we certainly cannot resolve 
semblance peaks closer than 0.25 sec apart. The initial 2.5 
sec of the emergent event yields a series of six semblance 
peaks spaced at intervals of approximately 0.4 sec. The max- 
imum for each cycle is marked by an arrow on the average 
semblance plot of Figure 11a. We analyzed each of these 
local maxima as a distinct arrival and refer to them by order 
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Figure 9. Vertical records from station ORGH for 
four similar events. Note the seismogram scale dif- 
ference for event 2. Under each trace is a plot of the 
average semblance versus time. The dotted lines de- 
lineate the time window for rm.„. 
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Figure 10. Plot of slowness vectors and confi- 
dence ellipses for the four similar events of Figure 9. 
Note the coordinate system scale. 
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Figure 11. Vertical records from station ORGH for 
(a) an emergent event and (b) an impulsive event. The 
shaded boxes delineate the time length of the wavelets 
used. Under each trace is a plot of the average sem- 
blance versus time. The light dotted line denotes the 
time of the first arrival. The arrows in (a) correspond 
to the six arrivals whose slowness vector estimates are 
plotted in Figure 12. 

of arrival. The slowness estimates and their confidence el- 
lipses are plotted in Figure 12. The character of the signal 
(Fig. 11a) appears to change between the third and fourth 
arrival, and the slowness vector estimates also appear to 
cluster into slowness vectors with more easterly bearings for 
arrivals before and including the third arrival and vectors 
with more westerly bearings for those after the third arrival. 
However, when we look at the confidence ellipses, there is 
no statistical differentiation between any of the slowness 
vector estimates. Thus, this clustering effect must be consid- 
ered marginal at best. 

Conclusions 

We have demonstrated that multi-wavelet beamforming 
has a distinct advantage over existing seismic array process- 
ing methods in that it produces multiple estimates of the 
slowness vector that can be used to calculate objective sta- 
tistical confidence intervals. We compared confidence inter- 
vals calculated using the jackknife statistical method for 
three estimators of the "center" of the distribution of slow- 
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East-West Slowness (s/km) 

Figure 12. Plot of slowness vectors and 
confidence ellipses for six arrivals from the 
emergent event of Figure 11a. Note the coor- 
dinate system scale. 

ness components—the median, the mean, and an M-esti- 
mator. 

The jackknife intervals obtained from the mean esti- 
mator are conservative since they weight all data equally, 
even gross outliers, and our simulation suggests that they 
closely approximate true 95% confidence intervals. How- 
ever, the mean estimates are severely biased by outlying 
values. On the other hand, the median effectively reduced 
the bias in the slowness estimates introduced from the noise 
field in low signal-to-noise conditions. However, the jack- 
knife intervals determined using the median underestimated 
the uncertainty closer to 10% of the time. 

The best estimator we investigated was the M-estimator. 
Our simulation results suggest that the M-estimator effec- 
tively reduced the bias in the slowness vector estimates, 
while still producing jackknife intervals that closely approx- 
imate true 95% confidence intervals. The M-estimator had a 
further advantage in that it dealt with the slowness vector 
data samples as two-dimensional objects instead of two one- 
dimensional components. This allowed us to determine con- 
fidence ellipses for the data instead of the somewhat artificial 
confidence intervals along the east-west and north-south 

components. 
For the real data example of the swarm of events, we 

noted that, as would be expected, the area of the confidence 
ellipses had a negative correlation with the signal-to-noise 
ratios of the data. We were also able to determine that the 
source for one event was statistically different from the 
sources of two of the other events. For the example of the 
emergent event, we discovered an underlying series of av- 
erage semblance peaks spaced at intervals of approximately 
0.4 sec. We treated these peaks as distinct phase arrivals and 
observed that the slowness estimates clustered according to 

a noted change in signal characteristic. However, their con- 
fidence ellipses all mutually overlapped, rendering this ob- 
servation as statistically unconvincing. 

It should be relatively straightforward to implement 
multi-wavelet beamforming as an automated tool. The com- 
putational machinery built up for time-domain beamforming 
can easily be changed to produce the slowness grids and 
vector estimates for our method. The number of computa- 
tions should also be tractable since the wavelet transforms 
only need to be calculated at a single time for each slowness 

grid. 
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and l2w2 
= A2w2, wnere ^i and A2 

are tne same size- ^ 
we compare these two matrices, we find 

Am„A = 
sin [2n(fcA + /„,,,) At, (m - n)] 

n(m — n) 

_ sin [2n(fcA - fwJ Kty (m - «)] 

n(m — ri) 

sin [2n { (fca + fwa) (kAt2) (m - n)] 

n(m — n) 

sin [In \ (/t,2 - fWt2) (kAt2) (m - ri)] 

n(m — ri) 

(Al) 

= A„ 

Since X and w are dependent on A, w, and w2 are exact 
scaled versions of one another. 

Appendix B 

We are interested in showing that the slowness com- 
ponent estimates are approximately statistically independent. 
We start by looking at the multi-wavelet transform. Ignoring 
dependence on time and frequency for now, the multi-wave- 
let transform can be written 

M 

w^ln,,] = E*F'^ (Bl) 

where w1-'' is the j'th complex Lilly and Park wavelet with 
M samples. Assume {rj,,,} is a Gaussian noise segment from 
station n with zero mean and unit variance. It follows that 
Z\ = 1V{i] is a complex Gaussian with zero mean and prob- 
ability density function 

where E[] denotes expected value (Miller, K., 1974). 

(B2) 

If z = 

and 

Appendix A 

We will show that if the sampling rate and the frequency 
band width are scaled simultaneously as stated below, then 
the Lilly and Park wavelets are exact scaled versions of one 
another. We start with two frequency bands with center fre- 
quencies/cl = \fc,2 and bandwidths fwA = \fWt2, where k 
is an integer. We also choose to decimate the data by k (i.e., 
Afj = kAt2). If we keep the number of samples that define 
the wavelets constant, we have two equations A^ = AjWj 

R E[\Zl\
2] E[ZlZ2l 

SfeztJ E[\z2\2] 

then the joint probability density function for z (Miller, K., 
1974) is 

/GO 
1 

7r2det(R) 
exp( — z*R   *z). (B3) 

If IsIziZzI = E[z2z*i] = 0, then it is easy to show that/(z) 
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= /(zO/fe)- This implies that zx and z2 are independent. So 
we will now investigate 

M      M 

=    E 2 ^,(<))*£[^,^m,p].    (B4) 
y=ip=i 

Us) = £[W<» [J7J (/,0)(W'*»[^„](/,5Ar))*] 

=    2   <(<'.)*■    (B9) 
9 = 5+1 

where the time delay T = sAt. This is the cross-correlation 
function, and it affects the argument for independence as the 
off-diagonals of the matrix R. As an informal order of mag- 
nitude argument, we plot the sample offsets s against 

Case 1: n = m, j, = k 

By the assumptions made about the noise field, we know 
that 

E[ln,ttlm,pi   = SmnK* where     K  = 

So for this case, 

Ox^y 5 

1 x = y 

WU) faj (W(%J) 2 y>\i] (w{,j])* = 2.    (B6) 
«=i 

The sum is equal to 2 because the real wavelets are individ- 
ually normalized to have an 12 norm of unity. 

Case 2: n = m, j ¥^ k 

In this case, 

= \$jk(s)\2/E[\Wtj) [r}n](f,0)\2]E[Ww [rin](f,sAt)\2l 

(BIO) 

which is the ratio of the magnitudes of the off-diagonals with 
the magnitudes of the diagonals of R. We can think of pjk(s)2 

as the square of the correlation coefficient for WU] and 
Wlk). Using the same Lilly and Park wavelets as in Figure 
1, we can see in Figure Bl that these ratios are small for 
small time shifts. Thus we will assume that £jk(

s) is cl°se 

enough to zero that/(z) ^/(zO/fe). which would imply 
that the wavelet transforms are statistically independent. 
Equation (9) defines the slowness component estimates as 
functions of semblance where the semblance for they'th Lilly 
and Park wavelet is 

wU] [//„] (wWfojy 
M 

= X w{
t
J) (w{,k))* = 0    (B7) 

by the orthogonality of the real wavelets. 

Case y.n¥=m 

For all values of t and p, E[rjnJ t]mp] = 0. Thus in this 
case, 

w{i] foj (WWfoJ) = o, (B8) 

even if j = k. 
From these three cases, we see that the transforms are 

independent in the presence of Gaussian noise. 
We will now reinstate the frequency and time depen- 

dence to the wavelet transform. The frequency dependence 
does not change any of the previous statistical arguments, 
since we only use the jackknife method on estimates deter- 
mined from a single set of wavelets. There are, however, 
differences in the time delays used from one slowness esti- 
mate to the next (otherwise the J slowness estimates would 
all be exactly the same!). This dependence does not affect 
case 1 or case 3, but it does change case 2. We define 

0 5 10 15 

offset s (samples) 

Figure B1. Plot of the magnitude ratio pfk versus 
the sample offset s, where the relative time delay be- 
tween complex wavelets j and k is sAt. Ratios for all 
possible combinations of pairs of the five wavelets are 
plotted. 
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l./'lCii'i  = S'-"(u) 

-2 ■K'{J)[n,Mt + T(u,n)] 
■/v „= 1 

N, 
,ivU]ln„]\f,t + T(U,«)] 

! are small and thus the assumption of independence. This 
does not pose any problems in practice, however, since the 

>. (Bll) jackknife confidence intervals in these cases would be very 
large anyway. A practical solution would be simply to con- 
sider such measurements ill constrained. 

Since the slowness component estimates are ultimately func- 
tions of the independent wavelet transforms, they are then 
themselves independent. 

In some cases, the slowness estimates may differ dras- 
tically. This would violate our assumption that the time shifts 
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Multi-wavelet Analysis of Three-Component Seismic Arrays: Application 

to Measure Effective Anisotropy at Pinon Flats, California 

by Lone K. Bear,* Gary L. Pavlis, and Götz H. R. Bokelmann 

Abstract We develop and apply a new technique to determine array-averaged 
particle motions from three-component seismic array data. The method is based on 
multi-wavelets, which are an extension of multi-taper spectral methods, and is a 
hybrid of Fourier and time-domain methods of array processing. Particle motions are 
determined by a time-domain principal-component method. A complex singular 
value decomposition is used on wavelet transformed signals assembled into multiple 
matrices (one for each wavelet). The eigenvector of the largest singular value of each 
matrix is used to estimate the phase between individual signals. We determine the 
relative phase between components to estimate an average particle motion ellipse for 
the array. The estimation procedure is made more stable by the redundancy inherent 
in the multi-wavelets and by M-estimators applied to individual phase factors in the 
complex plane. The method is applied to data from three-component array experi- 
ments conducted at Pinon Flats, California, in 1990 and 1991. We find remarkable 
departures of P-wave particle motions from the pure longitudinal motion expected 
for an isotropic media. Anomalies as large as 40° are measured from some azimuths. 
The azimuthally varying particle-motion anomalies are frequency dependent, gen- 
erally increasing in magnitude as frequency increases. Borehole measurements from 
sensors at 153 and 274 m depth below the array show a pattern indistinguishable 
from the surface sensors. The data are fit with a dipping, transversely isotropic me- 
dium with a symmetry plane having a strike of 70° and a dip of 30° to the northwest. 
We attribute our results to three superimposed effects: (1) an anisotropy of the near 
surface induced by preferential weathering of the granodiorite bedrock along joints, 
(2) a larger scale anisotropy induced by structural and intrinsic anisotropy related to 
the Santa Rosa mylonite, and (3) near-surface scattering. 

Introduction 

In the past 8 years, a wide range of experiments have 
been fielded using arrays of three-component seismic sta- 
tions. These arrays span apertures from 0.1 to 1000 km and 
provide new data on wave propagation by sampling the 
three-dimensional wave field at many length scales. This 
article focuses on quantifying the relationship of particle mo- 
tions and phase velocities (slowness vectors)—a unique ca- 
pability of a three-component array. This article has two 
distinct contributions. First, the methodology for three-com- 
ponent array analysis that we introduce here is new and util- 
izes some fundamentally different approaches from previous 
work. Second, the observations we make in applying this 
new methodology are remarkable. We find strong evidence 
for large departures of P-wave particle motions from those 

♦Present address: Exxon Production Research, P.O. Box 21879, Houston, 
Texas. 

predicted for a stratified, isotropic Earth—the prevailing 
theoretical model of the Earth in seismology. 

The first part of this article introduces a new processing 
method for three-component arrays that simultaneously es- 
timates three features of the incident wave field: (1) best- 
fitting particle motion ellipses for each station, (2) an aver- 
age particle motion ellipse for the entire array, and (3) the 
slowness vector for a best-fitting plane wave traveling across 
the array. This method incorporates aspects of time- and 
frequency-domain beamforming (e.g., Pavlis and Mahdi, 
1996; Kvaerna and Doornbos, 1986), and principal-com- 
ponent analysis (Vidale, 1986). The principal-component 
analysis is applied to all the station and component data si- 
multaneously, much like the multi-channel detector de- 
scribed in Wagner and Owens (1996). Our analysis is per- 
formed on data that has been multi-wavelet transformed 
(similar to a windowed Fourier transform) so that the anal- 
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y sis reflects the signal' s behavior in a particular time window 
and frequency band. 

The methodology developed in this article is closely 
related to that described in a companion article (Bear and 
Pavlis, 1999, this issue), and we will lean on some of the 
theoretical development contained therein. Both of these 
methodologies are dependent on the robust measurement of 
relative phase: either from station to station or between com- 
ponents of a single station. The companion article uses the 
robust phase measurement between stations to determine 
static time residuals such as would be used for seismic to- 
mography. Here, we instead use the phase measurements 
between components to determine particle motion ellipses. 

The most extensive recent work on three-component 
seismic array methodology can be found in a comprehensive 
suite of articles by Wagner and Owens (Wagner, 1994,1997; 
Wagner and Owens, 1993, 1995, 1996). Our work, in many 
respects, leans heavily on these previous articles, but our 
approach differs in two main ways. First, our approach util- 
izes a recent innovation we will refer to as the multi-wavelet 
transform (Lilly and Park, 1995). Wagner and Owen's work 
focuses primarily on Fourier methods. The multi-wavelets 
provide a hybrid between conventional time and Fourier do- 
main array processing methods that we will argue have some 
significant advantages. Second, Wagner and Owen's articles 
focus on so-called high-resolution methods. We experi- 
mented with high-resolution methods (Bear and Pavlis, 
1997b) but found utilizing them in combination with the 
multi-wavelet transform led to serious stability problems. 
Instead of trying to maximize resolution, our approach fo- 
cuses on robustness that we achieve through redundancy in- 
herent in the multi-wavelets and the inherent redundancy of 
array data. We would argue this is an important strength of 
this methodology over other approaches that have been ap- 
plied to this problem. 

On the observational side, the closest previous work to 
this article was that done by Bokelmann (1995a, 1996). Bok- 
elmann used data from GERESS, an array in southern Ger- 
many composed of 25 single-component stations. Five of 
these stations have co-located three-component sensors. 
Bokelmann determined the slowness vector by processing 
the vertical-component array data. He then used conven- 
tional particle motion analysis methods applied to each of 
the five three-component stations at GERESS and averaged 
the results. Our results differ in that all the data we examine 
are from full three-component seismic arrays. As a result, 
we determine a best slowness vector and best-fitting particle 
motion ellipse simultaneously from all the available data. In 
addition, the methodology developed here can be applied in 
multiple frequency bands to examine the frequency depen- 
dence of particle motion relative to a measured phase veloc- 
ity. On the other hand, our results can be directly related to 
Bokelmann's (1995a) as we apply the same inversion pro- 
cedure below to determine an anisotropic model to fit our 
observational data. 

Method 

The approach we use here is closely related to ideas 
described in a companion article by Bear and Pavlis (1999). 
Some background is found in that article that will not be 
repeated here for the sake of brevity. The primary difference 
is in how we exploit the relative phase between a group of 
signals. Consider a pure harmonic signal at frequency/. In 
this simple situation, the phase differences between stations 
m and n can be considered equivalent to a time difference 
between the two signals through the relation 

eK0m-0„)   _   eilnfl)m -'„) (1) 

This relation was used in Bear and Pavlis (1999) to deter- 
mine time residuals. On the other hand, the vector formed 
from the three components of a given station for a pure har- 
monic signal 

W ,K2nft + 4>i) r2e' ,i(2nfl+4>2) r3e> ,i(2nfi + <fe)] (2) 

defines an ellipse of instantaneous particle motion in three 
dimensions. The details of the ellipse are determined by the 
magnitude and relative phase of the three different compo- 
nents. It is this relation that is most applicable to the problem 
at hand. The key point is that with signals that are localized 
in frequency, the relative phase is the key quantity to be 
measured. 

For an array of N three-component stations and K time 
samples, we start by creating the 3N X K complex data 
matrix A(f, t, p), which can be partitioned into three N X 
K matrices: 

A(/; t, p) = 

Ax(f, t, p) 
Ay(f, t, p) 
AU t, p). 

where 

Ac
nk(f, t, p) = W[sc

n][f, tk + T(p, n)]. (3) 

W denotes an integral transform for studying the signal be- 
havior near frequency /, sc

n is the data recorded on the cth 
component of the nth station, and the r(p, n) are time shifts 
to account for travel-time differences between stations due 
to a plane-wave arrival with slowness vector p, or due to 
some more complex travel-time function [e.g., T may contain 
a static correction relative to a plane-wave model determined 
as described in Bear and Pavlis (1999)]. The integral trans- 
form we choose to use is the multi-wavelet transform de- 
veloped by Lilly and Park (1995). We make this choice 
largely because of an important advantage it inherently has 
in applications to modern broadband data: the multi-wavelet 
functions are "wavelets" in the sense that their timescales 
can be adjusted to match the frequency scale being resolved. 
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That is, wavelets for lower frequency bands are naturally 
longer in time than those for higher frequency bands. 

The rows of A consist of K samples of the wavelet trans- 
formed data, each over a slightly different time window. If 
we assume that the signal of interest propagates with a con- 
stant slowness vector over the times involved, then each col- 
umn of A provides the same information on the signal plus 
the effect of noise. We use times tk = [t + (k - l)Af], 
k = 1, . . . , K, where At is chosen so that tK - ^ is the 
length of one-half to one cycle of the center frequency /. 
This choice is not unique, but we have found it useful for 
reducing the computational load of this procedure. 

The complex matrix A can be written as a singular value 
decomposition 

A = UAV*. (4) 

where U and V are unitary matrices and A is a real diagonal 
matrix. We assume the SVD is organized such that Xx g 

^ min(/V,/0' U can be considered a rotation of the data 
such that the column 

Ui(/, U p) = 

uIC/, t, p) 
u{(/, t, p) 

«i(/. *, p)J 

(5) 

points in the direction of largest energy. We then perform 
the beamforming process by searching through possible 
slowness vectors p. We choose the best slowness vector by 
maximizing the coherence measure 

S(f, t, p) =   max 
c = x,y,z 

Utf,t, P)d-uW, ?, p)||2 

lldifliA.tf t, p) ufo; t, p)|p' 
(6) 

where dn = UN for n = 1, . . . , N. This measure is 
analogous to semblance (Husebye and Ruud, 1989) in that 
the denominator measures the average of the station powers 
and the numerator measures the power of the stack. 

The matrix A can also be partitioned by stations such 
that 

A(7, t, p) = 

A'if, t, p)' 

A^Cf, t, p) 

where 

AnM, t, p) = W[scM tk + r(p, n)]. (7) 

Each of the partition matrices can be considered as a portion 
of a 3 X 3 covariance matrix 

R(/, t, p) = ±A"(/U P)-Ant(/, f,P). (8) 

We showed in Bear and Pavlis (1997a) that the real and 
imaginary parts of the multi-wavelet transforms behave as 
the analytic filtered signal. Thus R(f, t, p) is analogous to 
the 3 X 3 covariance matrix used by Vidale (1986) for prin- 
cipal-component analysis of the signal's particle motion. We 
have already determined the N principal components in 

Ui(/, t, p) = 

u'CA t, p) 

ti[<f, t, p). 

(9) 

so that the complex values in the eigenvector associated with 
the largest singular value, u", describe the particle motion 
for the signal at station n over the time and frequency win- 
dows used. 

The use of the multi-wavelet transform is particularly 
appropriate here, since we are interested in a phenomenon 
that is expected to vary significantly both in time and in 
frequency. The real and imaginary parts of the kernels to the 
multi-wavelet transforms are specifically designed as real, 
discrete, finite time series that have their energy concentrated 
within a frequency band defined by the center frequency / 
and a bandwidth 2fw, where /„, S / (Lilly and Park, 1995; 
Bear and Pavlis, 1997a). The form of the multi-wavelets we 
used here can be found in Figure 1 of the companion article 
by Bear and Pavlis (1999). The multi-wavelet functions oc- 
cur in even and odd pairs, where each pair emphasizes a 
different portion of the time and frequency windows. The 
lengths of the time and frequency windows determine how 
many transforms can be used (Lilly and Park, 1995). In this 
study, we produced five usable transforms for each fre- 

(a) (b) 

(aew, 3ns, 0) 

Vertical 
Plane 

Figure 1. Picture of an ellipse in (a) three-dimen- 
sional view and (b) a view where the major axis a is 
pointing out of the page. By convention, </>min is posi- 
tive when the minor axis is rotated clockwise and neg- 
ative when rotated counter-clockwise. In this case, 
0maj would be approximately 240°, and <f>mi„ would be 
approximately —25°. 
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quency band following Bear and Pavlis (1997a). We em- 
phasize, however, that this choice is not unique. Longer anal- 
ysis windows and/or different frequency bandwidths could 
be used to define different wavelets with a differing number 
of usable functions. 

It is important to emphasize that our method is a multi- 
channel procedure. It determines estimates of elliptical par- 
ticle motions for each of the N stations in the context of 
producing the most coherent beam for all three components 
of the entire array. It is also important to remember that we 
have N ellipse estimates over a small spatial area for each 
of the five multi-wavelet transforms. This means that we can 
parlay this redundancy into more stable results for each sta- 
tion (by using the five pieces of data from the different trans- 
forms) and for the array as a whole (by using the 5N pieces 
of data from all the stations and the different transforms). 
Note, however, that the absolute phase estimates determined 
using different multi-wavelet functions cannot be compared 
directly, due to the relative phase differences between the 
complex wavelets that we have found no way to unambig- 
uously resolve. 

An ellipse can be completely described by the spatial 
orientations and lengths of the major and minor axes. We 
characterize the particle motion by three main observables 
(Fig. 1). First, there is the linearity of particle motion for 
station n. We use a standard measure called rectilinearity 
defined as en = 1 - bnlam where 2an and 2bn are the major 
and minor axes lengths, respectively. Second, we measure 
the azimuth of the projection of the major axis onto the hor- 
izontal plane that we will refer to with the symbol 0maj„. 
Finally, we compute the angle between the minor axis and 
the vertical plane $„„„,„ when looking down the major axis. 
For P waves propagating in a homogeneous, isotropic, hor- 
izontally layered medium, the ellipticity in the particle mo- 
tion will be induced mainly by P-to-S conversions at the 
layer contacts. Thus, the elliptical motion should be con- 
tained in the radial-vertical plane such that f9maj „ should be 
the same as the propagation azimuth (determined from the 
slowness vector) and <f>min,n should be zero. We will refer 
the deviation of the major axis projection angle from the 
propagation azimuth (#maj,„ - 6p) as the major axis skew, 
and the angle between the minor axis and the vertical plane 

as the minor axis tilt. 
We need similar values to describe the average elliptical 

particle motion for the entire array. There are multiple ways 
that one could average the results obtained for each station 
from the individual multi-wavelet transforms. We chose a 
dual averaging scheme that is made robust by using an M- 
estimator (Bear and Pavlis, 1997a; Chave et al, 1987). The 
M-estimator is used at each averaging step because it re- 
moves the effects of any outlying values. For the rectili- 
nearity e, we average over the en determined from each 
multi-wavelet transform separately and then average the val- 
ues for the five multi-wavelet transforms to obtain the final 
value. We determine an average array major axis by first 
averaging all the station major axes determined using a given 

T'min.n 

multi-wavelet transform. This leaves us with five samples of 
the array major axis orientation—one for each transform. In 
this article, we are primarily interested in determining the 
azimuth of the projection of the major axis onto the hori- 
zontal plane. To compute this angle, we normalize the 
lengths of the five major axis samples to one and perform 
another average to determine the array major axis. We then 
compute 0maj, which is the azimuth of the projection of the 
array major axis onto the horizontal plane. A similar process 
is applied to determine the array minor axis. The only dif- 
ference is that the station minor axes are all projected onto 
the plane perpendicular to the array major axis. This assures 
that the array minor axis is perpendicular to the array major 
axis as is necessary for an ellipse. 

Pinon Flat 

Numerous seismic arrays have been deployed at Pinon 
Flat because of its characterization as a hard-rock site (e.g., 
Vernon et al, 1991; Al-Shukri et al, 1992; Owens et al, 
1991). Pinon Flat is a nearly planar erosional surface in the 
San Jacinto Mountains, California, located 12 km northeast 
of the San Jacinto fault system and 25 km southwest of the 
San Andreas fault system (Fig. 2). It has approximately 60 
m of weathered material floored by plutonic rocks of gran- 
odiorite composition (Wyatt, 1982; Fletcher et al, 1990). 

We analyzed local event data from two seismic arrays 

-117° -116° 
m Granodiorite & quartz diorite 
tm Metasedimentary rock 
■I Santa Rosa Mylonite 

event (d)   ^c,- 

'A / •    -.events <«< 
\<SJ.       / to event (c)        "'-«. ;■ (a) and (b)|| 

34° 

*. "-*■ to 

-117° -116° 

Figure 2. Map of area surrounding Pinon Flat. The 
geology is modified from Dibblee (1981). The loca- 
tions for the events recorded by PFO-HF are plotted 
as filled circles, and those recorded by PFO-BB are 
plotted as filled squares. Events (a), (b), and (d) were 
recorded by PFO-HF and have 0loc values of 139° (1), 
139° (2), and 296°, respectively. Event (c) was re- 
corded by PFO-BB and has 0,oc = 213°. 
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at Pinon Flat—a very small aperture high-frequency array 
(PFO-HF) and a larger aperture broadband array (PFO-BB). 
We focused on studying local events due to some intriguing 
observations that had been made earlier with data recorded 
with the PFO-HF array. Vernon et al. (1998) plotted the raw 
station particle displacements for the first P arrival in a three- 
dimensional display for one of the same events we analyzed 
here. They note that (1) the motions are strongly elliptical 
and (2) the major axes of the motions are skewed from the 
great circle path backazimuth. 

The PFO-HF array consists of two borehole sensors and 
58 surface sensors (Fig. 3). All stations were equipped with 
2-Hz, three-component seismometers. The nominal sensor 
spacing is 7 m in the grid and 21 m along the arms (Owens 
et al, 1991). This array operated between 18 April and 27 
May 1990 and recorded triggered data at 250 samples/sec. 
We studied 16 events from PFO-HF, chosen for their cov- 
erage of arrival azimuths, signal-to-noise ratio, and data re- 
covery. The event locations are plotted as filled circles in 
Figure 2, and source parameters are listed in Table 1. Note 
that no events were recorded by this array in a 90° gap to 
the east of the array. 

We applied the processing described in the Method sec- 
tion to the surface sensors in the frequency bands 7 to 21 
Hz (time length 0.428 sec) and 2 to 6 Hz (time length 1.5 
sec). These bands were chosen to coincide with the change 
in signal behavior noted by both Vernon et al. (1998) and 
Wilson (1997) at approximately 8 Hz. The vertical-compo- 
nent beams [determined using a time-domain beamforming 
program called dbap (Harvey, 1994)] for these 16 events are 
plotted in Figure 4. This figure also shows the window over 
which the transforms were applied for the processing. The 
windows were chosen automatically by an algorithm that 
searched for the maximum coherence (equation 6). For most 
events, this window only overlaps with the first few cycles 
of the P wave, but for more emergent events, it sometimes 
is chosen at a later time. For this figure and the discussion 
that follows, we define three different angles: 0loc is the back- 
azimuth predicted by a great circle path from the source to 
the receiver, 0p is the backazimuth measured by slowness 
analysis from the array, and ömaj is the backazimuth mea- 
sured from the average P-wave particle motion major axis. 

We also independently processed data from the two 
borehole sensors in the 7- to 21-Hz frequency band. We 
determined estimates for the best-fit particle motion ellipses 
treating these data as a two-station array with a fixed slow- 
ness vector equal to that determined by the surface array for 
each event. Due to data problems, we did not process the 
events with 0loc = 43°, 177°, 296°, and 321° for the borehole 
sensors. 

We were not able to analyze data from the PFO-HF array 
in frequency bands lower than 2.0 Hz due to its small ap- 
erture and to its use of high-frequency sensors. The larger 
aperture of the PFO-BB array and the use of broadband sen- 
sors allowed us to study the wave-field behavior in a lower 
frequency band of 0.75 to 2.25 Hz (time length 4.0 sec). 

•••••• •••••• •••••• 
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Figure 3. Station locations for the two arrays at 
Pinon Flat. All the symbols in the shaded region de- 
note positions of surface sensors for PFO-HF. The 
open symbols also denote the approximate positions 
of the borehole sensors. The borehole sensor at the 
open circle is at 153 m depth, while the borehole sen- 
sor at the open square is at 274 m depth. The stations 
of PFO-BB are shown in the unshaded region as filled 
triangles. The relative position and scale of PFO-HF 
to PFO-BB is shown schematically in the unshaded 
region. 

Table 1 
Information about the Events Plotted in Figure 2 

A Depth 

01oc DateH'ime Array #sta (degrees) (km) m, 

7 1990117:12:52:42 PFO-HF 51 0.44 0.0 2.3 
18 1990132:23:54:47 PFO-HF 55 0.39 4.8 2.5 
43 1990109:20:24:58 PFO-HF 51 0.36 4.2 2.4 

139(1) 1990137:17:02:50 PFO-HF 53 0.99 6.9 3.3 
139(2) 1990137:19:32:50 PFO-HF 53 0.99 7.0 3.4 
153 1990139:09:48:20 PFO-HF 53 0.27 12.5 2.1 
177 1990136:01:14:16 PFO-HF 57 0.17 11.1 2.4 

181 1990122:11:34:57 PFO-HF 53 0.12 7.0 2.1 

217 1990132:19:42.47 PFO-HF 50 0.14 9.7 1.4 

239 1990134:05:05:21 PFO-HF 57 0.14 11.8 2.6 
266 1990138:12:05:43 PFO-HF 51 0.35 13.3 1.7 
280 1990130:07:23:31 PFO-HF 57 0.23 15.7 2.1 
296 1990110:03:24:59 PFO-HF 51 1.16 3.5 3.6 
321 1990137:18:44:27 PFO-HF 53 0.35 17.3 1.4 
333 1990124:02:23:22 PFO-HF 55 0.79 10.2 2.6 
339 1990139:06:30:58 PFO-HF 53 0.41 5.0 2.7 

36 1991057:17:08:30 PFO-BB 20 0.78 1.6 2.7 
213 1991088:04:55:20 PFO-BB 23 1.80 6.0 3.0 
308 1991077:03:58:26 PFO-BB 20 0.61 11.7 2.6 
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Figure 4. Vertical-component beams for events recorded by PFO-HF normalized to 
peak amplitude. The labels refer to each event's 0,oc, and the thin vertical lines denote 
0.5-sec marks. The placement of the multi-wavelet transforms are shown as thick hor- 
izontal lines. The entire time window is shown for the 7- to 21-Hz transforms. The 
arrowheads specify that the remainder of the time windows for the 2- to 6-Hz transforms 
are earlier in time. Note that the time windows generally overlap with the signal for 
no more than three cycles of the transform's center frequency. 

This array consisted of 28 three-component broadband 
Streckeisen STS-2 sensors arranged in five concentric circles 
named A through E (Al-Shukri et al, 1992). The three sen- 
sors of the outer E-ring had a large influence over the beam 
pattern of this array, and the loss of any particular station 
caused severe distortions in the beam pattern. Because two 
different E-ring stations were down for two of the three 
events we studied from this array, we decided not to use any 
of the data from the outer E-ring. We also had to throw out 
two of the D-ring stations due to data problems. Thus, we 
ended up with the 23 stations shown in Figure 3. This re- 
duced array had an effective aperture of 3 km. We present 
results for three events whose locations are shown as filled 
squares in Figure 2. Detailed source parameters are listed in 
Table 1. Unfortunately, these were the only local events that 
had good enough signal-to-noise ratios for processing in the 
frequency band of interest (0.75 to 2.25 Hz). 

Observations 

In Figure 5, we plot the array major axis skew (0maj - 6p) 
versus the propagation direction, 0p, and the location skew, 
(#ioc_ #p)> versus 9p for the three frequency bands. The hor- 

izontal and vertical lines are error bars for ömaj (vertical lines 
in Fig. 5a) and 0p (all other lines). The error bars for #maJ 

were determined by first finding a sphere around the array 
major axis that contained at least three of the five samples 
determined by averaging the station major axes for each 
multi-wavelet transform. The range of azimuths covered by 
the projection of the sphere onto the horizontal plane was 
then used as an error estimate. A similar process was used 
to determine the error for 0p from the five slowness vector 
samples. This is similar to the methodology for quantifying 
slowness vector errors described by Bear and Pavlis (1997a), 
but the time-averaging required in equation (7) implies that 
the samples used to produce these error bars are not statis- 
tically independent. Note the systematic variations in the ar- 
ray major axis and location skews with propagation direc- 
tion. 

These regular variations can also be seen in individual 
station results. Figure 6 shows the major axis skews for in- 
dividual stations from a subset of the events we examined. 
(The arms of the PFO-HF array are not shown so that the 
grid data can be seen more clearly.) We see the data show 
a consistent background skew that defines the array average 
with a superimposed smoothly varying pattern of deviations 
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Figure 5. Plots of (a) (0maj - 0p) and (b) (0loc - 0p) versus 9p with error bars. The 
open circles with dashed error bars are associated with events that have at least 20 
stations with signal-to-noise ratios of 2:1 or less. Note the persistent pattern over all 
three frequency bands, particularly in (a). 

within the array. The consistency, in fact, is even better for 
the PFO-HF data than it may appear at first glance. There are 
five stations—X0Y1, X3Y5, X3Y6, X4Y0, and X4Y2—that 
have consistently more negative skews than the other sta- 
tions. We suspect that their behavior is due to problems with 
one of the three sensors of those stations. The individual 
station results for the PFO-BB data show a sense of skew 
consistent with the array average, but we do not see the 
smoothly varying trends that are apparent from the PFO-HF 

data. This is an important observation as it indicates that 
there is an overall pattern that distorts particle motions for 
the entire PFO-BB array, but the smoothly varying patterns 
seen in the PFO-HF data occur at scale lengths smaller than 
the station spacing of the PFO-BB data. 

The rectilinearity, e, for the three frequency bands is 
plotted in Figure 7 versus propagation azimuth 9p. Note that 
the particle motion is markedly more elliptical in the 7- to 
21-Hz band than in either of the other frequency bands. This 
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Figure 6. The absolute magnitudes of (0maj>n - 0p) for the raw station data. A sphere 
of radius || (0maj>n - 0V) || is plotted at the position of each station in the array. A black 
sphere is plotted if (0maj,n - 0p) is positive; a gray sphere, if (0maj,n 0p) is negative. 
The scales for the radii are shown to the left. Only the grid of PFO-HF is shown due to 
space and resolution limitations. The axes point to the east and south, the solid lines 
point in the direction of 0loc, and the dashed lines point in the direction of 0p. 

matches the difference in the behavior of the PFO-HF data 
above and below 8 Hz noted by Anderson (1993) and Ver- 
non et al. (1998). In Figure 8, we plot the station minor axes 
tilts (<£,„„,„) for the PFO-HF data in the 7- to 21-Hz frequency 
band. We do not show the comparable figures for the other 
frequency bands because the orientations of the minor axes 
are not meaningful for signals that are linearly polarized. We 
note that there is a consistent pattern to the orientations of 
the minor axes across the array. This is remarkable consid- 
ering there is no spatial smoothing in this processing scheme. 
The patterns in magnitude and sign for the minor axes ori- 
entations are very similar to those shown in Wilson and Pav- 
lis (1999) for spectral amplitude variations. 

We suggest that the elliptical particle motions of the 
signals in the 7- to 21-Hz band (see Fig. 7) is caused mainly 
by near-surface focusing and scattering effects. Further dem- 
onstration of this comes from the two borehole instruments, 
which are both well below the weathered layer (Fletcher et 

al, 1990). We note that these signals are much more linearly 
polarized than those recorded at the surface. The rectili- 
nearity values range from 0.8275 to 0.9894 and track well 
with the curve for the 2- to 6-Hz frequency band in Figure 
7. On the other hand, the station major axis skews 
(0maj,n-0P) versus 0p do not appear to be a strictly near- 
surface affect. In Figure 9, we plot the polarization properties 
for the two borehole stations along the averaged surface sen- 
sor values from Figure 5a. The strong agreement of these 
results indicates a more deep-seated source for the observed 
skews. 

Discussion 

Our analysis of the data from Pifion Flat revealed five 
significant observations. 

1. The difference between the propagation azimuths and the 
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Figure 7. This figure shows the rectilinearity, e, 
versus the propagation azimuth 0p for all the events 
in the three frequency bands. 

array major axis skews have a regular pattern that is con- 
sistent in all three frequency bands (Fig. 5a). 

2. The difference between the propagation azimuths mea- 
sured by array analysis and the location azimuths also 
have a regular pattern very similar to that of the array 
major axis skews. This pattern holds in all three fre- 
quency bands, though it is most pronounced in the 7- to 
21-Hz band (Fig. 5b). 

3. The particle motions in the 2- to 6-Hz and 0.75- to 2.25- 
Hz frequency bands are nearly linear (Fig. 7). 

4. The particle motions in the 7- to 21-Hz frequency band 
for the surface sensors are much more elliptical (Fig. 7). 
The tilts in the minor axes from the vertical plane, though, 
are not random. There is a very distinct pattern in mag- 
nitude and sign across the array (Fig. 8). 

5. The particle motions for the borehole sensors in the 7 to 
21-Hz frequency band are nearly linear, but the pattern 
of major axis skews is nearly indistinguishable from the 
surface sensors. (Fig. 9). 

These observations are not what is expected for standard 
Earth models. Most theoretical seismology assumes the 
Earth is a horizontal stack of homogeneous, isotropic layers. 
But such a model cannot account for any of the observations 
listed above. Lin and Roecker (1996), using data from the 
PFO-BB experiment, measured differences between location 
and propagation azimuths for regional events analogous to 
the plots in Figure 5b. They modeled this behavior with a 
single dipping layer with moderate success. The difference 
between their study and this one, however, is that they did 
not investigate particle motion variation with respect to the 
propagation azimuths. They looked only at phase velocity 
variations from that expected from independently deter- 
mined event locations. This is a significant point about our 

results compared to most previous work—we are measuring 
P-wave particle motion relative to phase velocity vectors 
measured by the same array (e.g., observation 1). For even 
a complex stack of nonparallel dipping layers, conventional 
ray theory for isotropic media, which is based on a high- 
frequency limit (Aki and Richards, 1980, pp. 84-105), 
would predict no difference between the P-wave particle 
motion direction and the azimuth defined by the array slow- 
ness vector. This means that the values plotted in Figure 5a 
should be identically zero. 

Because of the inadequacy of conventional layer mod- 
els, we tried modeling the behavior of these data with a 
simple anisotropic medium. The model we use is one level 
of complexity above a dipping isotropic layer. That is, we 
treat the entire volume beneath the array as a dipping, trans- 
versely isotopic medium. Using the inversion method de- 
scribed by Bokelmann (1995a,b, 1996), the 7- to 21-Hz data 
were fit with a medium with the following properties: (1) 
the normal vector to the plane of symmetry dips 60° from 
the vertical and points 20° west of north, and (2) the medium 
is characterized by r\ = 0.65 and x = 0.3 [defined in Bokel- 
mann (1995a)] The results are shown in relation to the data 
in Figure 9. (Results from inversion of the 2- to 6-Hz data 
were similar but are not shown for the sake of brevity.) 

The transversely isotropic model yielded a variance re- 
duction of 57% for the 7- to 21-Hz data. Although this is a 
significant improvement over a dipping layer model, it still 
has some serious inadequacies. This model fits the gross 
pattern of these data, but comparison to Figure 5b shows we 
are not completely fitting the data within our measured error 
bars. There are two explanations for this: (1) the error bars 
underestimate the real uncertainties in the particle motion 
major axes, or (2) the model is inadequate. Although the 
error estimates we obtain here have theoretical weaknesses 
(discussed earlier), we doubt they are drastically in error. 
Furthermore, the consistency of individual station particle 
motions (Fig. 6) argue against this. The implication is that 
the model we have determined is an oversimplification. 

The anisotropy implied by this model is exceptionally 
strong. We compute that S-wave splitting would theoreti- 
cally approach 30% in some directions for such a medium. 
This is much larger than reported S-wave splitting for the 
Anza region by Peacock et dl. (1988). They observed S-wave 
splitting in this region of the order of 2% and less. We note, 
however, that very little of their data were from PFO. Fur- 
thermore, S-wave splitting measurements are based on an 
effect accumulated on the entire path from a source to a 
receiver, while what we measure is a local effect controlled 
primarily by the elastic properties of the earth directly under 
the array. 

What is the source of the observed particle motion de- 
viations we observe here, and does the anisotropic model we 
determined have any relationship to reality? The answer is 
ambiguous and points out a fundamental weakness in our 
existing theoretical models for wave propagation in the real 
Earth. That is, the earth is unquestionably a heterogenous 
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Figure 8. PFO-HF station data for </>min>n in the 7- to 21-Hz frequency band for five 
location azimuths. A sphere of radius || $„,!„,„ || is plotted at the position of each station 
in the array. A scale is shown in the lower right corner. A black sphere is plotted if 
0min,n is positive; a gray sphere, if ^w is negative (see Fig. 1 for definition of positive 
and negative). Note the regular patterns that exist across the array. 

media with seismic properties that fluctuate over a huge 
range of scale lengths ranging from the grain size of a given 
rock (~1 mm) to thousands of kilometers. Seismic wave- 
lengths range from the order of a few meters to thousands 
of kilometers. A poorly understood, fundamental problem is 
how inhomogeneity of a given scale is expressed observa- 
tionally. We all understand that a rock with a preferred ori- 
entation of minerals like a schist is intrinsically anisotropic 
because the fabric that defines the anisotropy is at a scale far 
below the smallest observed seismic waves. Fabric at inter- 
mediate scales, however, can induce anisotropic effects that 
are more difficult to sort out. It has been known for more 
than three decades [based on landmark work by Backus 
(1962)] that layered sedimentary rocks are anisotropic at 
wavelengths that are large compared to the scale of the lay- 
ering. Thus, a layered model over some range of wave- 
lengths must pass from conventional, high-frequency limit 
behavior to a behavior more analogous to that of an intrinsi- 

cally anisotropic material. Theoretical progress has been 
made toward relating anisotropic effects of different scales 
(see, e.g., Werner and Shapiro, 1998), but the problem re- 
mains poorly understood at best. [For a good fundamental 
physical understanding of this issue, the reader is referred to 
Chapter 1 of the book by Helbig (1994).] The issue this 
raises for this article is that to understand our results, we 
need to review what we understand about heterogeneity of 
the Earth within the vicinity of Pifion Flat at a range of 
relative scales. We organize this discussion in order of in- 
creasing scale length. 

Bedrock at Pinon Flat is a granodiorite with grain sizes 
of the order of a few millimeters and no appreciable fabric 
(i.e., no intrinsic anisotropy). At the scale of 1 to 100 m, 
however, the situation is drastically different. The near sur- 
face at Pinon Flat is an ancient weathering profile that has 
altered the original granodiorite to a depth of at least 60 m 
(Fletcher et al, 1990). The geologic processes that created 
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Figure 9. This figure plots deviations of the par- 
ticle motion azimuths determined from P waves from 
that expected for a pure longitudinal wave (major axis 
skews) as a function of the measured phase velocity 
azimuth. Data from both the surface array average 
(circles) are shown here in relation to single-station 
particle motions measured in the two boreholes in the 
PFO-HF experiment (upright and inverted triangles). 
All measured results plotted are for the 7- to 21-Hz 
band. The star symbols and the dashed lines are pre- 
dictions of major axis skews for the anisotropic model 
discussed in the text. The stars show the actual pre- 
dicted value that takes into account the measured 
phase velocity across the array. The dashed line 
shows the prediction for the anisotropic model at a 
constant ray parameter, but varying azimuth. It illus- 
trates the sinusoidal pattern that characterizes this dip- 
ping, transversely isotropic model. 

this weathering layer are unique to granitic rocks (Oilier, 
1969) and produce an extremely heterogeneous medium. 
Granitic rocks are weathered preferentially along preexisting 
joints because the primary agent of weathering is chemical 
attack by water. Water flow is focused on the enhanced per- 
meability zone around a joint in the rock leading to concen- 
trations of weathering along these surfaces. The result is 
largely unaltered corestones surrounded by rings of progres- 
sively more altered material. Preferred orientation of joints, 
which is almost universally observed, will lead to a char- 
acteristic fabric of the near surface. We suggest this may 
lead to an effectively anisotropic media at the higher fre- 
quencies we are observing. At these frequencies, the wave- 
length of the P waves we record are of the same order of 
magnitude as the entire weathered layer. We suggest this 
leads to bulk elastic properties of the near surface that are a 
major factor in producing all the particle motion deviations 
we observe, particularly in the upper frequency band of 7 to 
21 Hz. At the same time, the large variations in properties 
within the weathered layer undoubtedly strongly scatter the 
incident wave field as argued by Vernon et al. (1998). At 
the frequencies we are working with here, the scattering and 
induced anisotropy could well be thought of as essentially 

the same phenomenon—distortion of observed ground mo- 
tion induced by near-surface heterogeneity. 

The weathered layer, however, is probably not the 
whole story. It does not fully explain the borehole data, and 
it is hard to reconcile with the data from the 0.75- to 2.25- 
Hz band. How can we obtain nearly the same major axis 
skews in the borehole data when they are located well below 
the weathered layer? One explanation is that although at the 
lowest frequencies the boreholes are only a fraction of a 
wavelength below the surface, at the highest frequency ob- 
served here (21 Hz), the deepest borehole is only about 1 
wavelength below the surface. Hence, it is conceivable that 
the borehole data are impacted by anisotropic properties of 
the near surface even though these sensors are located well 
below the weathered layer. This cannot be addressed, how- 
ever, without more extensive modeling with synthetic seis- 
mograms that can properly model anisotropic media at finite 
wavelengths. This is beyond the scope of this article. 

The next level of heterogeneity is structure at the scale 
of a geologic map. A rock unit called the Santa Rosa my- 
lonite wraps around Pinon Flat (Fig. 2). Parcel (1981) argues 
the Santa Rosa mylonite was formed by right-lateral, hori- 
zontal transport and that the bend in this rock unit at Pinon 
Flat was induced by a deflection of the shear zone caused 
by interaction with the plutonic body that floors Pinon Flat. 
The Santa Rosa mylonite is a very strongly anisotropic rock. 
Kern and Wenk (1990) found these rocks to be transversely 
isotropic with a 5 to 19% anisotropy at surface pressures 
decreasing to 5 to 12% anisotropy at 600 MPa. Unfortu- 
nately, the sense of the anisotropy is the opposite of that 
determined from our inversion of these data. That is, the 
model we determined is a transversely isotropic medium dip- 
ping to the northwest with the fast axis perpendicular to the 
plane of symmetry. If we had pure Santa Rosa mylonite with 
its foliation plane dipping in the same northwesterly direc- 
tion, the normal to the foliation plane would be in the slow 
axis, not the fast axis. What this means remains ambiguous 
because the subsurface geometry of the Santa Rosa mylonite 
beneath Pinon Flats is not known. Dibblee's (1981) maps 
(see Fig. 2) show the mylonites wrapping around the west 
and south side of Pinon Flats. Measured foliations dip east- 
ward swinging to the north with angles ranging from 30 to 
60°, suggesting the mylonites wrap around and underneath 
the granodiorite from both the south and west sides. How 
this complex geometry would map into our data is not at all 
clear. 

The overall conclusion we reach is that the total effect 
we observe is probably the superposition of at least three 
processes: (1) near-surface anisotropy introduced by pref- 
erential weathering along joints in the granites, (2) a larger 
scale fabric induced by the Santa Rosa mylonite, and (3) 
near-surface scattering. The last process is probably most 
important in the highest frequency band (7 to 21 Hz) and 
probably contributes to the exceptionally large major axis 
skews seen from azimuths near 240°. There are several fun- 
damental ambiguities that prevent us from fully sorting this 
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out with available data. First, we have only a loose idea of 
the subsurface geometry of the Santa Rosa mylonite. The 
best guess of the actual geometry (Fig. 2) is that the mylonite 
wraps around the area where these data were collected. We 
know of no existing program capable of modeling such a 
complex medium even if we had better constraints on its 
geometry. Second, our concepts of the interactions of the 
wave field with the near surface at this site are largely con- 
jecture. The near-surface material at this site has heteroge- 
neity on a wide range of scales from at least 0.001 to 100 
m. We have considered attempting to model the near-surface 
material, but this is fraught with ambiguity for two reasons: 
(1) limited knowledge of subsurface structure and (2) fun- 
damental questions about the validity of existing computer 
codes to properly model such a wildly heterogeneous me- 
dium. 

The phenomenon we observe here is only observable 
with a three-component array. A question this article leaves 
hanging is: How common is this type of departure from the 
standard model of wave propagation in a layered Earth? We 
suggest that the methodologies developed here, when ap- 
plied to three-component array data, can provide fundamen- 
tal new observations on anisotropy within the Earth. Broad- 
band data from arrays of varying scale have the potential to 
provide a new way to measure crustal anisotropy through 
application of the techniques described in this article. 
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Multi-channel Estimation of Time Residuals from Broadband Seismic 

Data Using Multi-wavelets 

by Lone K. Bear* and Gary L. Pavlis 

Abstract We describe a new multi-channel procedure for estimating arrival time 
residuals from seismic array data. It incorporates aspects of three traditional array 
processing methods: frequency-domain beamforming, time-domain beamforming, 
and principal-component analysis. We start by applying the multi-wavelet transform 
to the data, which yields a suite of narrow-band seismograms. We use the multi- 
wavelet transform, instead of the windowed Fourier transform, for superior control 
over both the time and frequency resolution. We employ a beamforming procedure 
that uses principal component analysis on the transformed, time-aligned data. The 
values in the principal component vector and value pair are used to calculate a mea- 
sure of coherence analogous to semblance. A measure of the misfit of the data to our 
plane-wave model is contained in the phase differences in the principal component 
vector. The phase differences can be converted directly to time residuals, but they 
are only resolvable to a fraction of the analyzing wavelength. Hence, our method is 
a staged process that moves from lower to higher analyzing frequency bands. We 
present two data examples that illustrate the wide range of spatial and temporal scales 
over which this approach can be applied. First, we determine time residuals for the 
deep-focus Bolivian earthquake of 1994 for a set of broadband stations spread over 
most of southern California. The time residuals had a range of 2 sec, and after their 
removal, we were able to stack the data to over 1.0 Hz. Second, we study a local 
event recorded by high-frequency sensors at an array in Turkmenistan with an ap- 
erture of less than 1 km. We found that the time residuals only had a range of 0.02 
sec, but by removing them, we significantly improved the stack of the data for the 
arrival's dominant frequency. 

Introduction 

The past decade has witnessed a revolution in seismic 
instrumentation brought on by the IRIS-PASSCAL program. 
Two features of this facility are proving especially impor- 
tant: (1) the portable broadband seismometer and (2) the 
sheer number of matched instruments that can be deployed 
simultaneously. The first has dramatically improved the 
range of temporal frequencies we can work with. The second 
expands our capabilities in recording spatial frequencies. 
That is, by deploying many sensors over a mix of scale 
lengths, we can investigate the wave field at different spatial 
scales. As a result, a large suite of data is now accumulating 
that provides unprecedented, precision measurements of the 
seismic wave field that are rapidly changing our understand- 
ing of wave propagation in the Earth. We assert that the 
speed of change brought on by this revolution in data quality 
has  led  to  a  gap  in  processing  procedures  that can 

♦Present address: Exxon Production Research, P.O. Box 21879, Houston, 
Texas. 

take full advantage of these new data. This article and a 
companion article (Bear et al., 1999, this issue) investigate 
some new ways to exploit these features of modern experi- 
mental data. Both focus on coherent processing of seismic 
array data to solve two different, but fundamentally inter- 
related problems. 

Seismic arrays have a long history in nuclear monitoring 
(e.g., Husebye and Ruud, 1989). Originally, arrays were 
viewed as three or more matched instruments deployed in a 
regular pattern with a centralized recording and processing 
system. In the modern era, however, a large class of recent 
experiments are arrays in a less restricted sense. We define 
an array as any group of stations with reliable timing whose 
signals can be combined by a coherent processing method 
based on some assumed model of wave propagation. With 
this definition, what constitutes an array becomes frequency 
dependent. At one end, the global seismic network is an 
array for free oscillations. That is, by definition, the whole 
Earth is only a few wavelengths in size for free oscillation, 

681 



682 L. K. Bear and G. L. Pavlis 

and the signals are coherent in the sense that they can be 
modeled very accurately from existing global Earth models 
(e.g., Lay and Wallace, 1995, pp. 154 to 171). At the other 
end of the seismic spectrum are high frequencies of the 1- 
to 100-Hz band that overlap the observational data range of 
exploration seismic methods. Between these end members 
are the traditional short-period and long-period recording 
bands that were the focus of seismology before the digital 
age. Modern instruments are called "broadband" because 
they cover all or a large portion of the classical short-period 
and long-period bands. The traditional short-period records 
spanned the range of approximately 0.5 to 2 Hz, and long- 
period records spanned the range of approximately 0.02 to 
0.08 Hz. Both are less than one decade in frequency. In 
contrast, modern instruments commonly record three or 
more decades in frequency with "broadband" meaning ap- 
proximately 0.01 to 10 Hz to most people. 

A key element of broadband is the range of scales im- 
plicit in broadband data. One cycle of a signal at 10 Hz is 
four orders of magnitude shorter than one cycle at 0.01 Hz. 
The same is true for wavelength. Given that four orders of 
magnitude is about the difference in size between your entire 
body and the thickness of a single strand of your hair, it is 
clear that processing methods applied to modern broadband 
seismic data need to adapt their scale to the frequency band 
being analyzed. The approach described in this article and 
its sibling (Bear et al, 1999) does this by utilizing a new 
technique, developed by Lilly and Park (1995), we refer to 
as the multi-wavelet transform (Bear and Pavlis, 1997). The 
multi-wavelets are a set of special functions derived from an 
optimization condition that makes the functions as concen- 
trated in time and frequency as possible. They are closely 
related to the prolate spheroidal functions (Slepian, 1983) 
that are the foundation of the multi-taper spectral methods 
of Thomson (1982). The approach, however, is more akin 
to the newly emerging field of wavelet transforms [see, for 
example, Strang and Nguyen (1996) or Kumar and Fou- 
foula-Georgiou (1994)] that build on the pioneering work by 
Daubechies (1992). The result is something that should be 
viewed as somewhat of a hybrid between conventional Fou- 
rier methods and wavelet transforms. 

The methods described in this article and its sibling 
(Bear et al., 1999) can be viewed as a type of multi-channel 
cross-correlation technique that exploits the wide bandwidth 
of modern seismic arrays. In this article, we correlate cor- 
responding channels across the aperture of a given seismic 
array to produce a set of travel-time differences from a ref- 
erence model (in our case, a simple plane-wave time shift). 
In the companion article, we take this one step further to 
analyze particle motions from three-component seismic ar- 
rays. That is, we can do time shifts using methods in this 
article to more precisely align data from multiple stations, 
and then we can use a similar approach to determine average 
polarization properties from the entire array and individual 
station polarizations relative to the array average. 

The essence of the approach introduced in this article is 

simple. We start by filtering to a low enough frequency band 
that the time residuals are small with respect to the center 
frequency of the band. We apply beamforming in the com- 
plex, multiwavelet transform domain to find a best-fit plane 
wave. The misfits to the plane-wave model appear as com- 
plex phase shifts in the data. The phase shifts are converted 
into time residuals and added to the plane-wave time delays. 
We repeat this process through a series of staged complex 
transform filters that refine the residuals using successively 
higher frequency bands. The approach can be thought of as 
a hybrid of the time-domain and spectral methods of corre- 
lation. It is time domain like in its use of explicit time shifts 
to align data for stacking. At the same time, it is frequency 
domain like through the use of phase shifts computed from 
a series of complex numbers. This has a potential advantage 
over traditional methods in three ways: (1) precise control 
of time-frequency resolution trade-offs in different fre- 
quency bands are possible through the multi-wavelet func- 
tions, (2) the procedures can be made more robust through 
redundancy inherent in the multi-wavelet transform (Bear 
and Pavlis, 1997), and (3) variations in signal-to-noise ratio 
in different bands can, in principle, be handled. 

The ideas developed in this article are important because 
determination of relative arrival times by coherent signal 
processing is a ubiquitous problem in modern seismology. 
In the days of analog seismograms, picking was a manual 
process. Today, timing of phases is commonly done by ei- 
ther manual picking or some form of cross-correlation. This 
article presents an alternative approach that can, we suspect, 
make more effective use of modern broadband data. Al- 
though this method is analogous to cross-correlation, the net 
result is fundamentally different from any existing procedure 
we are aware of because it is truly a multi-channel method. 
VanDecar and Crosson (1990) developed a method they re- 
fer to as a multi-channel cross-correlation method, but there 
is a fundamental difference between what we describe here 
and their method. VanDecar and Crosson's (1990) method 
looks at correlations between all pairs of related channels 
and then determines a best-fitting set of time delays for the 
whole array using a least-squares procedure. Our method is 
more direct because we work only on the original waveforms 
and process them directly to produce a set of optimal time 
shifts. Furthermore, although we have only limited experi- 
ence with the algorithm to date, we suspect it will prove 
more robust than cross-correlation-based methods like that 
of VanDecar and Crosson (1990) because of our extensive 
use of robust M-estimators as an intrinsic part of the meth- 
odology and because we consider all the data simulta- 
neously. We argue that this robustness may make our ap- 
proach well suited to automated retrieval of teleseismic 
P-wave residual—the fundamental data of seismic tomog- 
raphy. This is an important, potential cost-saving benefit to 
experimental programs given the now routine application of 
P-wave tomography as a tool for study of crust and upper 
mantle structure. 

We demonstrate the use of this approach on arrays of 
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two dramatically different scales. First, we apply the meth- 
odology to seismograms from the great Bolivian earthquake 
of 1994 recorded by a suite of broadband stations spread 
throughout southern California. This array has an aperture 
of over 300 km. Without the static corrections we deter- 
mined, these data will not stack at frequencies over 0.2 Hz, 
but with the static corrections, we obtain coherent stacks to 
frequencies over 2 Hz. Second, we apply the method to high- 
frequency (1 to 100 Hz) data recorded by a three-component 
array with an aperture under 1 km. Here we found statics 
improved the array performance by allow the stacking of 
higher frequencies but much less dramatically than for the 
southern California example. We found that even with stat- 
ics, the array performance fell off dramatically at frequencies 
over 35 Hz. We suggest this may reflect strong near-surface 
scattering into high-frequency surface-wave modes and 
strongly variable, localized site effects. 

Method with Single-Component Data 

Beamforming 

To put what we have done in perspective, it is useful to 
review the ideas used in standard frequency-domain beam- 
forming with an array of single-component stations. Con- 
ventional frequency-domain beamforming (e.g., Kvaerna 
and Doornbos, 1986) uses windowed Fourier transforms to 
form the spectral covariance matrix R(f, t) with entries 

Rmnif.t)   =   T[5„](/,  0-   mj'C/iO. (1) 

T[s^(f, t) is the windowed Fourier transform for signal s 
recorded at station n at frequency/ and time t, andf denotes 
the complex conjugate transpose. The plane-wave time delay 
for an arrival with slowness vector p = (pew, pns) and station 
n is r(p, ri) = — p • x„, where x„ is the vector position of 
the station with respect to a local Cartesian system. Thus, 
the power for a slant stack of the measured signals assuming 
slowness vector p is 

^beamC/; U p) = eTR(/; t)e, 

where the steering vector is 

e   =   — [e
2™fi(P,l) _ _ _ e2m/r(pA)J_ (2) 

The use of a simple phase-shift for the steering vector 
means that we assume the signal behaves as a sinusoid over 
the times involved. With a time window that is long com- 
pared to the dominant period of a signal, this can be inac- 
curate because the phase shifts may involve many cycles of 
the dominant signal. Consequently, a more accurate algo- 
rithm is to apply the transform to the time-shifted data such 
that the covariance matrix is a function of the slowness vec- 
tor p and 

Rmn(f, t, p) = T[JJK t + T(p, «)] (3) 

• flsJlf, t + T(p, m)l 

The power of the beam is then 

^beamC/, U p) = d*R(f, t, p) d,   where dn = I     (4) 

In this case, the steering vector is not needed because R is 
computed by moving the window in time rather than de- 
pending on phase shifts. Clearly, this method is more ac- 
curate, particularly when the phase shifts are large, but is 
more expensive to compute. 

Multi-wavelet Transforms 

For classical beamforming, the use of the windowed 
Fourier transform is standard, but a key concept of this ar- 
ticle is that there is a better choice. We will be considering 
our data over a wide range of frequency bands and prefer to 
use transforms where the time lengths of the kernel functions 
match the scale of the frequencies to be studied. This scaling 
could be accomplished with Fourier transforms by scaling 
the time length of the windowing taper to match the fre- 
quencies to be studied. Instead, we choose to use the com- 
plex multi-wavelet transforms (Lilly and Park, 1995; Bear 
and Pavlis, 1997) that are genetically related to the multi- 
taper spectral estimation method (Thomson, 1982). 

The real and imaginary parts of the integration kernels 
for the multi-wavelet transforms are specifically designed as 
real, discrete, finite time series wm that have their energy 
concentrated within a frequency band defined by a center 
frequency/,, and a bandwidth 2/w, where/,, Si/C. As can be 
seen in Figure 1, these functions occur in even and odd pairs, 
where each pair emphasizes a different portion of the time 
and frequency windows. The multi-wavelets are defined as 
wj7' = {w$ + iw$}, where/ is the center frequency, 
w$ is the jth even wavelet, and wjf} is thejth odd wavelet. 
Each multi-wavelet transform can then be written 

rC+T/2) 

<Wm [s](f, t) = s(Qw% (£ - t) d£ 
Jf.t-T/2) 

Ht + T/2) 

+   i S(ÖW$ a   ~   Odt      (5) 
J(t-T/2) 

That is, the multi-wavelet transformed data, WU] [s](f, t), 
are produced by convolution with the complex pair of basis 
functions, wf. 

By using the multi-wavelet transforms in place of the 
Fourier transform, we can define the elements of the covar- 
iance matrix for fhey'fh wavelet to be 

«Jaw '. P) = W<" [s„M t + T(p, n)] (6) 
•WU)[sm?[f, t + T(p, m)]. 
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(a) (b) 

Time Frequency 

Figure 1. Ten real Lilly and Park wavelets plotted 
as even and odd pairs, (a) in the time domain and (b) 
their frequency power spectra. The thick lines in (a) 
are the upper portions of the envelopes for the multi- 
wavelets that roughly describe the weighting of each 
pair in the time domain. The solid and dashed thin 
lines correspond to the even and odd wavelets, re- 
spectively. 

The number of multi-wavelet transforms that can be con- 
structed for a given frequency band is dependent upon the 
desired time and frequency resolution, as specified in Lilly 
and Park (1995). Lilly and Park (1995) used different basis 
functions for different frequency bands, but Bear and Pavlis 
(1997) show that the same basis functions can be used for 
progressively lower frequency bands by using a series of 
decimation stages. 

Principal-Component Analysis 

With the multi-wavelet transform, an estimate of the 
covariance matrix RU)(f, t, p) can be obtained from the outer 
conjugate product of the complex vector a°'(f, f, p) whose 
entries are the transformed seismic data at each station 

a™ if, t, p) = #' [s„M t + T(p, «)].        (7) 

With this definition, d • aU](f, t, p) is the complex array 

beam for wavelet j, and equation (4) can still be used to 
compute the power in the beam. R0)(f, t, p), for a fixed ;' 
and time t, is of rank one. One standard way to increase the 
rank is to use a fixed time window and average the power 
of the transformed data over frequency (e.g., Wagner and 
Owens, 1996). For our analysis, however, we choose to fix 
the frequency band and average the power over K points in 
time as 

R0'1 if, t, p) = i A"' (f, t, p) A^}t (f, t, p), 

where 

Aw </, t, p) = [a"' (f, h, p) ... a"1 (f, tK, p)].    (8) 

The rows of each of these matrices are time-shifted (using 
slowness vector p), complex valued signals yielded by con- 
volution with the y'th pair of multi-wavelets. We note that 
the tk are not necessarily adjacent time samples nor evenly 
spaced in time. We used tk = [t + (k - I)At], where At 
was chosen so that tK - t} was the length of one-half of one 
cycle of the center frequency. The value of Ar could be as 
small as the sample rate, but for low frequencies, this is ill- 
advised as the number of columns in A01 can become large. 
More discussion on the structure of the complex matrix A01 

appears in the Appendix. 
Any complex matrix can be written as a singular value 

decomposition: 

AU) = UAVf, (9) 

where U and V are unitary matrices and A is a real diagonal 
matrix. Note that 

Rw (f, t, p) = | A^ (f, t, p)A^ {f, t, p) 

= I UAVtVAUt = i UA2Uf.    (10) 
K K 

Thus, finding the singular value decomposition (SVD) of A 
is equivalent to finding the eigenvalue decomposition of R. 

We assume the SVD is organized such that "kx s X2 ... 
XminiNt x). U can be considered as a rotation of the data such 
that the column U! points in the direction of largest energy 
(for further discussion, see the Appendix). If the signals from 
each station are exactly lined up in time and where identical 
in form, then the values in U! would all be the same. If there 
are time shifts between stations, then the complex values of 
ut will have different associated with phase angles. Simi- 
larly, amplitude variations between stations will be reflected 
in the modulus of the components of Uj. 

We can relate the variations in phase angles between 
stations m and n to time differences by 

e'(.em-e„)   _   ei2n(fmtm-f„t„)_ (11) 
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If we set fm and /„ to the center frequency of the wavelet 
transform, the relation between phase angle and time differ- 
ence is direct. These phase differences, which we determine 
from Ui, reflect the deviations of the data from the propa- 
gation model (here deviations from a plane-wave fit). Thus, 
the related time differences are the time residuals that we 
are trying to determine. 

We note that this approach incorporates aspects of three 
traditional array processing methods: frequency-domain 
beamforming, time-domain beamforming, and principal- 
component analysis. It is frequency-like through its use of 
the complex phase, but it is also timelike in that the data are 
directly shifted in time based on a best-fit plane-wave arrival. 
Finally, it is a principal-component method because it uses 
only the largest singular value and associated left eigenvec- 
tor for determining the phase angles between stations. In 
fact, this approach is similar in many respects to the multi- 
channel detector described in Wagner and Owens (1996). 

Methodology 

Our method is a staged process in which the final time 
residuals are determined by progressively accumulating time 
residuals from the lowest to the highest frequencies. Each 
stage is predicated on choosing a frequency band for the 
multi-wavelet transforms to be applied to the data. The fre- 
quencies for a particular stage must be low enough so that 
the data stack fairly well even with the remaining time re- 
siduals but not so low that the phase differences between 
station signals are unresolvable (i.e., the maximum spread 
of the time residuals should generally be between 1/15 and 
1/4 the center period). Because each stage decreases the 
spread of the remaining time residuals, we naturally progress 
from lower to higher frequencies. Our method is fundamen- 
tally broadband in the real sense of the word. 

For an L staged process, there will be a set of center 
frequencies for the multi-wavelet transforms/j </2 < . . . 
< fL. During the 7th stage, we form the N X K matrices 
AU)(f,, t, p), where 

4£ if,, t, p) = WW [sn]\fh h 
i-1 

+ t(p, ri) + 2 r,(n)].    (12) 

The superscript j again denotes thejth member of a set of J 
multi-wavelet transforms with center frequency /,. We de- 
note the time residuals determined from the previous 7—1 
iterations as r,(n). We determine the singular value decom- 
positions of the A^if,, t, p) and pick out the largest singular 
value AF'(//, t, p) and the associated left eigenvector 
uF'(//> *> P)- To measure the coherence of the stack, we use 

(//,,W     IMIrW if,, t, p) up» if,, t, P)f 

where ufi1 is the kth component of Uj. This measure is di- 
rectly comparable to semblance commonly used in time- 
domain beamforming (e.g., Husebye and Ruud, 1989). The 
numerator is the power of the beam, and the denominator is 
the average signal power at each station. 

For each time t and a set of possible slowness vectors 
B, we determine the peak coherence values S^ak(f,, t) from 
a grid search through the values calculated using equation 
(13). We choose the time to use in estimating the slowness 
vector by averaging the peak coherences S^ifj, t) for the 
J multi-wavelet transforms and finding the time point tmax 

where the average peak coherence attains a maximum value. 
We calculate estimates for the east-west and north-south 
components of the slowness vector separately. We compute 
the east-west slowness components by 

2    Pi?n(Pb Pi) 
nU)   -   <J>k.PiHB  
Few ^ ~, 7~> 

Z,     rn(Pb Pi) 
(Pk.PiKB 

where 

m(PbPi) = 

,uW !2£   -Uh2 

2{L, lM|W 
(13) 

'0 if 

SU] if,, W, Pk, Pi) < 0.9 Sg* if,, fmax), 

SU] if,, Ux, Pt. Pi)     if 

•     $       ifb fmax> Pb Pu  —  0.9 Opeak (//, ?max). 

(14) 

The north-south components are computed in a similar fash- 
ion. Equation (14) involves a center of mass calculation for 
points with values above the threshold 0.9 S^&ifj, tmm) and 
is preferable to a pure peak measure due to the discrete na- 
ture of the set of slowness vectors. The final estimate for 
the slowness vector pest is found by applying a robust M- 
estimator (Bear and Pavlis, 1997; Chave et al, 1987) to the 
separate py} measurements. 

In this article, every time we produce an estimate from 
a set of values, we use an M-estimator to protect the results 
from being severely biased by any outlying values. Outlying 
values in this case could be due to spectral nulls in the signal 
that correspond to a particular wavelet's frequency content. 
In cases of estimation from a set of station and/or component 
data, outliers could be due to increased local noise or the 
breakdown of a given station or station's component. Ob- 
viously, these types of outliers do not reflect the data process 
itself and would generally be considered bad points to be 
thrown away. The M-estimation procedure provides an au- 
tomatic way of throwing away such points without requiring 
human intervention. 

Phase Shifts to Time Residuals 

The values in up1 are complex numbers with associated 
magnitudes and phase angles. If we plot these numbers (Fig. 
2), we expect them to cluster in the complex plane (i.e., the 
signals almost match, even with no shifting). We produce a 
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Station n 

Figure 2. Plot of values of a single-component u, 
in the complex plane. The estimate of the center point 
(circle) was determined by applying a robust esti- 
mator to the data values (crosses). 

robust M-estimate of the center of the distribution of the 
complex values of U! and define its phase angle d£nU.T as 
the zero time residual. We then convert the phase angle for 
the nth station to a time residual by 

i(8n   — 0center) 0i2nVcii
l)m (15) 

where fc is the center frequency of the multi-wavelet trans- 
forms. Finally, we calculate the time residuals r/n) using a 
robust M-estimator on the separate T}

71
 (n). 

Method with Three-Component Data 

The method we use for three-component data is a direct 
extension of the single-component case. The largest change 
is the addition of a data rotation to place the maximum 
amount of signal energy along one axis. 

Beamforming 

The beamforming computation for the /th stage is es- 
sentially the same as in the single-component case except 
the matrices \ljl are now of dimension 3Ar X K. The ma- 
trices can be partitioned by the three components such that 

Aw (f„ t, p) = 

/V (fl, t, p)" 
ih2 (fl, t, p) 
"3 (fl, t, P)J 

where 

A„P (fj, t, p) (16) 

f„ tk + T(p, n) + S rfyi) 
i=i 

and where sc
n denotes the signal recorded on the cth com- 

ponent at the nth station. The left eigenvectors can also be 
partitioned into 

uF} (f„ t, p) = 
'oP (//, t, p)" 
uF»'2 (fj, t, p) 

«P (fi, t, p)J 
(17) 

Thus, we can replace equation (13) with 

Su) (f„ t, p) (18) 

=   max 
c = 1,2,3 

lUF'q}, t, P)d-up (f„t, p)||2 

2||Ap> (/„ t, p)uF»-c (f„ t, p)|; 2' 

Axis Rotation 

The left eigenvectors u^1 from equation (17) combine 
relative phase and amplitude information for all three data 
components. If we group the values of uF' by station, then 
we have N complex three-vectors for each multi-wavelet 
transform. These three-vectors are analogous to the principal 
eigenvectors determined in Vidale's (1986) principal-com- 
ponent analysis method. Vidale used the complex analytic 
signals, determined using a Hilbert transform, to produce the 
3X3 covariance matrix. We are using the multi-wavelet 
transformed data, but in Bear and Pavlis (1997), we showed 
that the multi-wavelet transform behaves in a manner similar 
to a Hilbert transform. The three-vectors can be written as 
(rle

2ni'l'\ r2e
2"i4n, r3e

2ni,h) and can be considered as three- 
dimensional phasors that define ellipses of instantaneous 
particle motion. The best single-component recording of the 
signal at a particular station would have been accomplished 
by orienting the recording component along the major axis 
of the particle motion ellipse for that station. We can con- 
struct this best recording by changing the coordinate system 
of our three-component data so that one of the new coordi- 
nate axes lines up with the major axis of the particle motion 
ellipse. We choose a best overall coordinate system for the 
array by aligning one of the new axes with the direction 
determined using a robust M-estimator on the major axes 
from all the stations. (More details on this procedure are 
given in the companion article by Bear et al, 1999.) 

After rotation, we perform the rest of the processing 
using an equivalent single-component array with one com- 
ponent aligned along this direction. Thus, we are back to the 
single-component case, and the phase shift to time residual 
step is accomplished just as before. We note, however, that 
at each stage, we choose to recalculate the best particle mo- 
tion major axis. We do this because the polarization can be 
strongly dependent on frequency (Park et al, 1987). 

Data Examples 

Deep-Focus Bolivian Earthquake 

Our first data example is a set of recordings of the 9 
June 1994 Bolivian deep-focus event (Wu and Beck, 1995; 
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Goes and Ritsema, 1995). We created a large aperture array 
of 19 three-component broadband stations situated in south- 
ern California as shown in Figure 3. These stations have 
been pulled from three networks: TERRAscope (Wainger, 
1988), a subset of ANZA (Fletcher et al., 1987), and a tem- 
porary network (Ichinose et al, 1996). This array encom- 
passes most of southern California, with an aperture of ap- 
proximately 300 km. 

The epicenter for the Bolivian event is at a backazimuth 
of 121° from the array, and slowness analysis for the full 
ANZA array also suggests an azimuth of approximately 121°. 
Thus, we restricted our range of slowness vectors to those 
within 3° of 121° to reduce processing time. We started our 
processing in a frequency band with fc = 0.05 Hz (fw = 
0.0375 Hz) and found that the major axis for the particle 
motion also suggested an azimuth of 121°. We then pro- 
gressed through frequency bands of/c = 0.2 Hz (fw = 0.15 
Hz) and/c = 0.5 Hz (fw = 0.375 Hz). The effects of the 
removals of the time residuals at each iterative step are 
shown in Figure 4. This figure illustrates four interesting 
features. First, we note that the signals without time residuals 
removed would obviously not stack at the dominant fre- 
quency in this window of 0.5 Hz. Second, we note that to 
deal with time residuals as large as those seen in Figure 4 
and to be able to stack to the dominant frequency, we need 
the instruments to be able to record frequencies from ap- 
proximately 0.05 to 1.0 Hz. Instrumentation capable of this 
has only become common in the last decade. Third, we note 

California 
ISA 

Arizona 

100 kilometers 

MExicdr^^ 

Figure 3. The locations of the 19 broadband, 
three-component instruments from the TERRAscope 
and ANZA networks and a temporary network in 
southern California that form our large aperture array. 
The thick arrow in the lower right denotes the direc- 
tion of arrival of the Bolivian event. 

that stations USC and RPV have significant differences in 
time residuals and signal shape. Yet these two stations are 
at similar elevations and relatively close to one another. Fi- 
nally, we note that the signal alignment process is not nec- 
essarily smooth. In Figure 4b, we see that the signal for GSC 
has shifted past both stations USC and RPV to the left and 
then must shift back toward the right in Figure 4c. 

In Figure 5, we examine spectral properties of the array 
stack for the Bolivian event both with and without the time 
residuals removed. The spectral ratios were determined by 
taking the power spectrum of the array beam at each fre- 
quency [determined using the multi-taper method of Thom- 
son (1982)] and dividing it by the median power spectra of 
the individual signals at each array station. The higher the 
spectral ratios, the better the data stacks. Because of the very 
wide bandwidth of these data, we computed spectral ratios 
for time windows of two different lengths—100 and 10 sec. 
The former provides improved frequency resolution for the 

(a) 

(b) 

(c) 

(d) 

Figure 4. The iterative removal of time residuals 
from the Bolivian event. All the station signals are 
plotted with data from four stations emphasized with 
thicker lines. Shown are the vertical components after 
the removal of the plane-wave time delays for (a) the 
original data, (b) with the time residuals from the 
0.05-Hz frequency band removed, (c) with the time 
residuals from (b) and from the 0.2-Hz frequency 
band removed, and (d) with the time residuals from 
(b) and (c) and from the 0.5-Hz frequency band re- 
moved. 
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Figure 5. Power spectral ratios for the Bolivian 
event using (a) a 100-sec-long analysis window and 
(b) a 10-sec-long analysis window. The bold curves 
are the spectral ratios for the beam with the time re- 
siduals removed. The dashed curves are the spectral 
ratios for the beam without the time residuals re- 
moved. The dotted lines denote the theoretical pure 
white noise floor at l/N. 

low frequencies, while the latter provides improved time res- 
olution at the higher frequencies. As expected, the removal 
of the time residuals has vastly decreased the power loss in 
the stack at the higher frequencies. Without corrections for 
statics, this group of stations would not function as an array 
for frequencies greater than 0.2 Hz. With the removal of the 
time residuals, we get coherent stacks to 2.0 Hz, which is 
within 1 Hz of the point where the data intersect the noise 
floor. This benefit to stacking with careful prealignment has 
been known for some time (Bungum and Husebye, 1971; 
Cox, 1973), but its importance seems to be less widely rec- 
ognized. 

A Local Earthquake 

Our second example is a local earthquake recorded by 
a high-frequency array. This event was recorded on 21 Jan- 
uary 1994 at the Geyokcha array on the border between Iran 
and Turkmenistan. We use a subset of 36 stations from the 
array equipped with triaxial 4.5-Hz natural period sensors. 
The location of the array and the station configuration are 
shown in Figure 6. Note that this array is configured as a 

Figure 6. The 36 high-frequency stations of the 
Geyokcha array. The star on the map shows the lo- 
cation of the array in central Asia. The inset map 
shows the array geometry. 

square, 600 m on a side. This is more than 300 times smaller 
than the California array. 

The Geyokcha array is located on mudstone bedrock (P 
velocity <=» 2.5 km/sec) and has 50 m of topographic relief 
with a general slope from northwest to southeast. These el- 
evation differences produce static time delays at each station, 
and if the topography were exactly planar, then the delays 
could be written 

rs(n) = ax„ (19) 

where a has units of time per distance and defines the time 
delays due to topography with respect to direction. We can 
write the total time delays as 

*tot(P. n) = r(p, n) + T,(a, ri) (20) 
=  -px„ + ax„, 

which is indistinguishable from 

T'(p', n) = p'x„ =  -(p - a)-x„.        (21) 

Equation (21) implies that planar changes in topogra- 
phy, if not corrected for before beamforming, can change 
the calculated slowness vector significantly. For the event 
we are examining, the backazimuth changed by 10° and the 
apparent velocity increased by 2.5 km/sec after we applied 
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the topographic corrections. We note that other planar effects 
in the Earth (e.g., a dipping structure) would also have simi- 
lar effects on the slowness vector such that the time delays 
can be written 

Tiot(P. ") = T(P> ") +  2 ^(ap. ")• (22) 
P=\ 

The only question is how much effect they have on the cal- 
culated slowness vector. It is conceivable that an equation 
could be derived to solve for the summed effect because the 
ap are static in time while p varies with arrival time (anal- 
ogous to the relation in reflection seismology between resid- 
ual statics and normal moveout corrections). We do not pur- 
sue this path though, because this array is small. 

We started our processing in a frequency band with/c 

= 8.0 Hz (fw = 6.0 Hz) and iterated through fc = 15.625 
Hz (fw = 11.72 Hz) and/c = 31.25 Hz (fw = 23.4375 Hz). 
The effects of the removals of the time residuals at each 
iteration step are shown in Figure 7. In Figure 7a, we can 
see that there are still significant time residuals even after 
the topographic corrections have been applied. We can also 
see that there would be significant power loss at the domi- 
nant frequency (25 Hz) if the data were stacked without ap- 
plying the static corrections we determined. 

The spectral ratios plotted in Figure 8 were calculated 
in the same manner as those for the Bolivian event in Figure 
5, except we only required a single time window of length 
1.25 sec to resolve all the frequencies of interest. We see 
that the beam for the data without any static corrections dif- 
fers little from the corrected beam below 14 Hz. A major 
portion of the topographic effects appears to have been ab- 
sorbed into the shifting of the slowness vector when trying 
to produce a best beam in the 2- to 14-Hz frequency band. 
The removal of the time residuals is necessary, though, to 
significantly improve the stack in the 14- to 35-Hz band. 

Why both beams lose power so precipitously above 35 
Hz is not understood. We would expect to be able to stack 
to approximately 50 Hz, because the incident wave field 
arrives at near-vertical incidence (13 km/sec—much like a 
teleseism) and the wavelengths for frequencies between 35 
and 50 Hz are still comparable to the dimensions of the array. 
When we look at the data filtered to frequencies above 40 
Hz, we can see that there is significant signal but that the 
signals differ drastically from station to station both in am- 
plitude (by an order of magnitude) and in waveform. This 
loss in signal coherence above 35 Hz may be due to very 
localized near-surface effects. Wilson (1997) notes for an 
array somewhat smaller than Geyokcha that the spatial scale 
length of signal spectral fluctuation decreases with higher 
frequencies. He argues that these fluctuations are due to 
near-surface scattering at the base of the weathered layer. 
The approximate wavelength for ground roll (assuming a 
velocity of 1.0 km/sec) at a frequency of 35 Hz is 29 m. 
This is a scale much smaller than the size of the array and 

(a) 

(b) 

(c) 

(d) 

Figure 7. The iterative removal of time residuals 
from a local event near the Geyokcha array. The sig- 
nals from three stations are emphasized. Shown are 
the vertical components after the removal of the to- 
pographic and plane-wave time delays for (a) the 
original data, (b) with the time residuals from the 8- 
Hz frequency band removed, (c) with the time resid- 
uals from (b) and from the 15.625-Hz frequency band 
removed, and (d) with the time residuals from (b) and 
(c) and from the 31.25-Hz frequency band removed. 

comparable to the interstation spacing. We suggest that the 
loss in beam power may be indicative of scattering into high- 
frequency Rayleigh waves or very localized near-surface 
resonances that vary under scales of 50 m. 

Discussion 

We have introduced a new method for calculating time 
residuals directly from recorded seismic signals that incor- 
porates aspects of three traditional array processing tech- 
niques: frequency-domain beamforming, time-domain 
beamforming, and principal-component analysis. All the sta- 
tion and component data are used simultaneously in deter- 
mining an arrival's slowness vector for a best-fit plane wave 
and in calculating the time residuals that represent the misfit 
to the plane-wave model. Our method works like a multi- 
channel cross-correlation procedure but does not directly use 
any correlation functions. 

Our method is broadband in the real sense of the word. 
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Frequency (Hertz) 

Figure 8. Power spectral ratios for a local event. 
The bold curve is the spectral ratio for the beam after 
topography effects and time residuals are removed. 
The dashed curve is the spectral ratio for the beam 
without any corrections. The bottom axis is at the 
\IN level predicted for pure white noise. 

We start by processing at low enough frequencies so that 
array beamforming will find a coherent stacking direction 
despite any time residuals. The time residuals appear as 
phase shifts in the complex transformed data. The phase 
shifts are converted to times, removed from the data, and we 
progress to a higher frequency band to remove remaining 
time residuals. Since the only information needed by this 
process is the frequency band for the multi-wavelet trans- 
forms and a range of times and slowness vectors, it should 
be easy to automate for routine processing. 

The type of data necessary for applying this method 
depends on the scale of the time residuals (generally related 
to the scale of the array) and the frequencies contained in 
the signal. The Bolivian event had time residuals of 2 sec 
across the large aperture California array and a dominant 
frequency of 0.5 Hz for the first arrival. To remove the time 
residuals so that the data would stack to the dominant fre- 
quency, we needed a recording of the signal from approxi- 
mately 0.05 to 1.0 Hz. This is an extremely wide bandwidth, 
and the use of this method would require the use of broad- 
band instrumentation for analysis of teleseismic signals. 

On the other hand, the time residuals for the local event 
at Geyokcha were only on the order of 0.02 sec, and the 
dominant frequency of the processed arrival was 25 Hz. 
Thus, we only needed frequencies above 2 Hz, and the high- 
frequency sensors of the array were acceptable. A major dif- 
ficulty with these data were topographic effects. The topo- 
graphic corrections for the Geyokcha array were of the same 
order as the time residuals we determined from our proce- 
dure. Furthermore, because of the planar slope of the topog- 
raphy in the array, these corrections produced a large shift 
in the measured slowness vector. In this case, the removal 

of the topographic effect was critical to producing unbiased 
time residuals. Had we not made this correction, both the 
estimated slowness vector and residuals would have con- 
tained this bias. This situation has an exact parallel in re- 
flection seismology processing. The elevation corrections we 
applied are completely analogous to what are usually called 
geometric statics, and the corrections we estimate are anal- 
ogous to higher order static corrections computed by a range 
of methods (residual statics, refraction statics, etc.). 

There are circumstances that may cause difficulties for 
this method. As noted earlier, the recording bandwidth for 
the data can pose a limitation. If the instrumentation in use 
does not record to low enough frequencies, an initial step to 
remove the largest time residuals by another method may be 
necessary. This may also be the case for data that has a low 
signal-to-noise ratio in the lowest frequencies. With tele- 
seismic signals, it is common to find low signal-to-noise 
ratios in the microseism band (15- to 5-sec period). For such 
signals, it would probably be necessary to skip this band. In 
this situation, it may prove more practical to start the process 
from a set of initial picks made by an automated picker or 
by a human analyst. For a system designed to process large 
amounts of data, these issues need to be addressed, but con- 
sidering them in detail is beyond the scope of this article. 

We also need to stress that the time residuals determined 
here are generally not the same as those determined by stan- 
dard methods. The direction of arrival is determined inde- 
pendently from the source location and is reflected in the 
slowness vector used to determine the plane-wave time de- 
lays r(p, ri). These plane-wave delays are removed from the 
data before the time residuals are calculated. If the slowness 
vector azimuth is the same as the azimuth from the array to 
the source, then the time residuals determined by this method 
will be comparable to those determined using a standard 
method. Otherwise, they will be distinctly different. Com- 
parable time residuals, in this case, could be determined by 
adding the plane-wave time delays to the time residuals, then 
removing the travel path time Ar from each station. 
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Appendix: Further Discussion on the 
Complex Matrix PJjl 

Figure Al shows graphically the steps leading to the 
creation of the complex matrix Au)(f, t, p). We start with 
the raw time signals (Fig. Ala) and use multi-wavelet beam- 
forming (equation 14) to perform a grid search over possible 
slowness vectors (p) to determine the best-fit plane-wave 

(a) (b) (c) 

(d) 
{j} Au,= 

Figure Al. A graphical representation of the crea- 
tion of the complex matrix Aü) showing 3 of AT sig- 
nals, (a) Start with the raw data—sn(t). (b) Remove 
the plane-wave time delays from (a)—sn[t + r(p, ri)\. 
(c) Apply the multi-wavelet transform to (b)—Wy) 

[sn]\f, t + t(p, n)] (solid line is the real part; dashed 
line is the imaginary part), (d) The complex matrix 
AU) is formed from the data in (c). The black windows 
delineate the time window of analysis. The two- 
headed arrow in (b) delineates the portion of the sig- 
nal that contributes to the transformed signal in the 
analysis window of (c). 

time delays T(pest, n). We remove these time delays from the 
data (Fig. Alb) and then apply the multi-wavelet transforms 
with center frequency/ (Fig. Ale). We choose a time win- 
dow of analysis starting at time t and pick the values of the 
transformed data at time samples /,,..., tK within this 
window to form the matrix A0) (/, t, p) (Fig. Aid). Note 
that because the transformed data are complex, the values in 
Aw (f, t, p) are complex. 

The matrix A01 has a physical interpretation that is basic 
to the understanding of our method of time-residual esti- 
mation. The entries in each row are analogous to time sam- 
ples taken from the filtered (complex) analytic signal, be- 
cause the real and imaginary parts of the multi-wavelet 
transform have a similar orthogonal relationship (Bear and 
Pavlis, 1997). The complex values in each column, which 
can be written rDef, provide information on how misaligned 
the signals are from one station to another (seen in the phase 
angles #„), so for K time samples, there are K estimates of 
this misalignment. 
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We can investigate the physical meaning of performing 
principal-component analysis on the matrix Ayi in the fol- 
lowing manner. We consider the case where the data at each 
station consists of a known, perfectly coherent signal S with 
slowness vector p and "random noise" v. We define the 
transformed data vectors for the signal and noise respec- 
tively as 

w = [Ww [S]]f, t + T(p, 1)] 
••• #1 [S]\f,t + T(p,N)]Y 

and 

(Al) 

tj(t) = [f«[v][f, t + T(P, 1)] (A2) 
• • • W^Mlf, t + T(p, N)]Y, 

Station 1 

total vector for 
one time sample 

noise vectors at 
each time sample 

X^ 

signal vector (same for 
each time sample within 
complex constant.) 

Station 3 

where the superscript T denotes the matrix transpose. This 
means that d • w = TVU][S]\f, f+r(p,l)] and hopefully d • 
T)(f)Ä= 0 (where d is as defined in equation 4). If we assume 
the signal propagates with a constant slowness vector over 
the analysis time window, then we can write 

Aw if, t, p) = [c,w + ti(h) ■■■ cKw + ti(tK)],    (A3) 

Station 2 

Figure A2. Averaging of the station data through 
time allows the influence of the noise to be mitigated. 
For the averaged data, U! should point roughly along 
w. When only using data from time tk, ux will point 
in the direction ckw + if(tk). 

where the ck are complex constants. 
If there is no noise, then A17' is of rank one and U[ = 

w. If the noise is, on average, nondirectional, then Uj should 
point in a direction similar to that of w. If no averaging 
occurs, then the direction of Uj will be biased in the direction 
of the noise at that time. A cartoon of the situation is shown 
in Figure A2, where N = 3 and the data are real. 

Real signals, however, differ from this simplified model 
in two ways. First, amplitude fluctuations can occur with no 
change in waveform. This has no effect on this method 
because we only consider the phase. The second more per- 
vasive problem is introduced by scattering. Scattering intro- 
duces waveform fluctuations within the scale of a wave- 
length. This leads to variations in waveform shape from 
station to station. These variations in waveform shape 
changes the complex coefficients we use to determine phase 

shifts. As a result, some bias is inevitable as we are forced 
by the uncertainty principle to accept some smoothing in 
time. In our case, this is defined by two time scales: (1) the 
length of the analyzing wavelet and (2) the window used in 
the principal-component analysis. This is, in fact, a major 
strength of this approach as the multi-wavelets are the most 
compact functions possible with a specified frequency band- 
width. 
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